
 67

Supercomputing in the South Pacific: performance of a parallel cluster
using existing USP facilities

Imtiyaz Hussein1, William J Blanke2

1Department of Maths and Computing Sciences, University of the South Pacific, Suva, Fiji
hussein_i@usp.ac.fj

2Department of Maths and Computing Sciences, University of the South Pacific, Suva, Fiji
blanke_w@usp.ac.fj

ABTRACT

This paper presents the details of a parallel computing cluster built using existing computing resources at the University
of the South Pacific. Benchmarking tests using the High Performance Linpack Benchmark were done in order to measure
the gigaflops (billions of floating point operations per second) ratings for solving large systems of linear equations while
varying the number of computers and Ethernet switches used. These tests provided an overall maximum gigaflops rating
which allowed comparison of USP's cluster with leading edge clusters from around the world. Efficiency results also
provided insight in how improving the existing network infrastructure might improve the performance of USP's cluster and
increase its gigaflops rating. Further tests revealed that the number of Ethernet switches used in USP's current network
layout is a definite contributor to the low efficiency of the system as a whole.
Keywords: Beowulf cluster, parallel computing, Linpack, benchmarking, network topologies

1 INTRODUCTION

In order to do computationally intensive research in
any field, whether it be chemistry, physics, mathematics,
or any of the other sciences, a powerful computer is
needed. Unfortunately such powerful computers typically
have large price tags and for that reason high performance
computing facilities are not available to researchers locally
in the South Pacific region. Purchasing computing time on
systems elsewhere in the world is possible, but it is
expensive and, in the case of the South Pacific,
impractical, given the low bandwidth Internet connections
available to communicate with such systems located
offshore.

For these reasons, computationally intensive research is
difficult to do in the region, even though many locally
important issues, such as climate change modeling, could
benefit significantly from it. To remedy this problem,
given the budgetary and location constraints
outlined previously, this paper details the performance of a
high performance computing environment constructed
solely from existing, unused (and therefore free) computer
resources at the University of the South Pacific. In its
present form, it is able to solve a wide range of
computationally intensive problems in a multitude of
fields and disciplines and will hopefully foster further
parallel computing research at the University.

2 METHODS

To build the computing cluster with a zero dollar
budget, already existing, but underutilized, high
performance desktop computers at the University are
teamed with several free open source software packages.
The University of the South Pacific currently has 44 state
of the art desktop computers donated by the Japanese
government which are being utilized in labs on the Laucala
(Suva, Fiji) campus at the Department of Maths and
Computing Sciences. Each computer is equipped with a 2
gigahertz Pentium 4 processor, 256 megabytes of RAM,
and two 40 gigabyte hard drives.

Currently, these computers are turned off and the labs
are locked during night time hours (8:00 PM till 8:00 AM)

primarily due to security and safety concerns and are
completely unavailable for student use. This project makes
use of these 44 machines and their 12 hours per day of
unused time-in essence 528 hours of computing time per
day to perform research computations by using parallel
processing.

Parallel processing means linking together two or more
computers to jointly solve a computational problem.
Originally such computers were expensive and custom
built. However, an increasing trend since the early 1990s
has seen the movement from expensive and specialized
proprietary parallel supercomputers towards networks of
PCs or workstations (Becker et al. 1995).

Clusters of homogeneous or heterogeneous PCs or
workstations working together to solve a problem are
rapidly becoming the standard platforms for high-
performance and large-scale computing. Known as
Beowulf clusters (Sterling, 2001) these systems are built
using very affordable, low-cost, commodity hardware such
as Pentium PCs, fast Local Area Networks (LANs), and
standard free open source software components such as the
UNIX operating system (Hoffman and Hargrove, 1999),
MPI, and PVM parallel programming environments.

A common approach to parallel programming is to use
a message passing library, where a process uses the library
calls to exchange messages (information) with another
process. This message passing (Pacheco, 1996) allows
processes running on multiple processors to cooperate in
solving problems. When used correctly, it allows the group
of computers to work as one.

MPI (Gropp et al. 1996) is one such message passing
interface standard. It is available on a wide variety of
platforms, ranging from custom built massively parallel
systems to networks of workstations. There are several
implementations of MPI in existence. MPICH, used in this
paper, is freely available from Argonne National
Laboratory and Mississippi State University.

A job management system is the software component
that ensures the balanced use of cluster resources. It
maximizes the delivery of resources to different computing

 68

jobs, given competing user requirements and local policy
restrictions. The software monitors the state of the cluster,
schedules work, enforces policy and tracks usage. For this
paper, the free open source Maui job management system
and PBS scheduler (Feitelson and Rudolph, 1995) were
used.

For measuring the performance (benchmarking) of the
parallel computing cluster, the High Performance Linpack
Benchmark (Petitet et al. 2000) was used. Linpack
(Dongarra et al. 1986) is a general purpose library for
solving dense systems of linear equations in double-
precision (64 bit) arithmetic using the Gaussian
elimination method. In addition to its value for solving
systems of linear equations, Linpack has also found use in
measuring the performance of supercomputers worldwide.
The High Performance Linpack Benchmark keeps track of
execution time and then divides this into the number of
floating point operations that it performs to get a gigaflops
(billions of floating point operations per second) rating.
The gigaflops rating is the basis for the performance
graphs in this paper.

3 RESULTS

The theoretical peak performance (P) of any parallel
system is calculated by equation 1:

P = SCFH (1)

In this equation, S is the number of computing nodes, C is
the number of CPUs per computing node, F is the number
of floating point operations per clock cycle, and H is the
clock rate. Thus for 44 nodes using single 2 gigahertz
processors, and assuming one floating point operation per
cycle, the peak performance would be 88 gigaflops.
Theoretically, the USP cluster should be able to reach that
number. However, in practice this is never achieved
because of efficiency issues.

The percentage of time that a group of computers
spend doing actual work on the problem (in contrast to the
time they spend idle waiting for messages to arrive or for
other computers to finish a required computation) in
comparison to the theoretical peak performance is known
as efficiency. The efficiency of a cluster at any point in
time is the measured gigaflops rating Rmax, obtained by
running the Linpack benchmark, divided by the theoretical
peak performance as shown by equation 2.

E = Rmax / P (2)

As an example, if a computer system has twice as many
nodes as another system but overall it is only half as
efficient, both systems will be equivalent in their gigaflops
rating. Thus efficiency is extremely important to consider.

There are many things that can cause efficiency issues.
If an algorithm is poorly designed, increasing the number
of computers involved in a calculation will usually result
in much lower efficiency. Such an algorithm would be said
not to be scalable. A highly scalable algorithm should
show little reduction. Linpack is very well designed and
considered highly scalable (Dongarra et al. 1986).

Communication problems can also cause efficiency
reductions. In a parallel computing cluster, the way that the
network connections are constructed and the speed and
latency of those connections bear heavily on how well the
entire system performs. If messages take especially long to
travel from one computer to another that will likely impact
the performance of the entire group as a whole.

The existing computer laboratories used at USP
consisted of 44 computing nodes and three 100 megabit
Fast Ethernet switches located in two different rooms, the
MaCS “Small Lab” and the MaCS “Large Lab”. Figure 1
shows the setup of the entire cluster. In essence three sub-
clusters, each linked by a single switch exist within this
group of computers. The first switch connects 16
computing nodes which is located in the MaCS “Small
Lab”. The second switch connects twelve computing nodes
which are located in the MaCS “Large Lab” and finally
the third switch connects the remaining sixteen computing
nodes in the MaCS “Large Lab”. Since this configuration
cannot be changed, a looming question is how these
different network topologies will affect the overall
efficiency and thus the overall performance of the system.

Figure 1. Existing USP MaCS computer lab arrangement

Given that the Linpack algorithm is considered highly
scalable, to determine the efficiency impact of increasing
the numbers of computing nodes and also the numbers of
Ethernet switches, several High Performance Linpack
Benchmark runs were made with varying numbers of
computing nodes (and therefore involving varying
numbers of Ethernet switches). As the benchmark dictates,
the highest performing problem set solved is quoted for the
gigaflops rating.

 69

Table 1. Linpack Benchmark Results

Nodes Switches N(1/2) Nmax Rmax Eff.
4 1 4000 14000 4.891 61%
8 1 5000 20000 8.97 55%
12 1 8000 25000 12.41 52%
16 1 9000 28000 16.24 51%
28 2 14000 36000 20.22 36%
44 3 22000 48000 24.20 28%

Using the 16 computing node “Small Lab” cluster, runs

were done of 4, 8, 12, and 16 computing nodes using one
Ethernet switch. The results are shown in table 1. N
represents the size of the linear equation system that was
solved for the given peak gigaflops rating. N(1/2)
represents the size of the linear equation system that was
solved for half this rating. Rmax is the maximum gigaflops
rating found for a series of problem sizes. For example, the
16 computing node run solved a 28,000 by 28,000 number
matrix averaging 16.24 billion floating point operations
per second with an efficiency of 51%. Essentially it spends
half the time working on the problem and the other half
communicating or waiting for data. As per N(1/2), it
solved a 9,000 by 9,000 number matrix averaging 8.12
billion floating point operations per second.

One interesting feature to note on this chart is that as
the number of computing nodes are increased the gigaflops
rating also increases. This would be expected with more
computers you can calculate more numbers. Another
interesting feature is that the efficiency is highest using 4
computing nodes at 61% but then drops off when using 8
computing nodes to 55%. It levels off at 52% and 51%
using 12 and 16 nodes respectively. Communication
delays are relatively low with only 4 computers involved.
As the numbers of machines increases, delays do as well
and efficiency suffers. However, this is tempered by the
scalability of the algorithm with the higher computing
node counts.

In order to use more than 16 computing nodes at the
USP computer labs, another switch would need to be
employed. For the next runs, the two MaCS “Large Lab”
sub clusters were joined together to create a cluster
consisting of 28 computing nodes and two switches. The
results of the benchmark is shown in table 1. Gigaflops
numbers have certainly increased-up to 20.22 billion
floating point operations per second for a matrix of size
36,000 by 36,000. However, efficiency has definitely
suffered at 36%. Two thirds of the time, the cluster is not
doing productive work.

To go beyond 28 computing nodes, all three sub
clusters, the 2 MaCS “Large Lab” sub clusters and the
MaCS “Small Lab” sub cluster, will need to be joined
together. This will create a cluster of 44 machines across 3
Ethernet switches. The results from benchmarking this
cluster are shown in table 1. Again, the gigaflops rating
rises to 24.20 but much more slowly than before. As
shown in figure 2 even though we have significantly
increased the number of computing nodes the gigaflops
performance has not risen linearly. This is mainly due to
the paltry 28% efficiency of the system. Almost three
quarters of the time, the cluster is not doing productive
work.

Figure 2. Comparison of cluster performance against
different number of nodes.

Now that we have the peak gigaflops rating of 24.20
over 44 computing nodes, we can compare the
performance of the cluster at USP with other
supercomputers from around the world. The Top 500
project (Meuer et al. 2004) was started in 1993 to provide
a reliable basis for tracking and detecting trends in high-
performance computing. A list of the sites operating the
500 most powerful computer systems is assembled and
released twice a year. The best performance on the
Linpack benchmark is used as a performance measure for
ranking computer systems.

The third fastest computer in the world (the two fastest
are not clusters in the same sense as USP's system)
according to the Top 500 is a cluster consisting of 1,100
Apple Computer Power Mac G5 desktops at Virginia
Polytechnic Institute and State University (Showerman and
Enos, 2004). Each node on the cluster is a Power Mac
computer with dual 2 gigahertz PowerPC 970 processors
made by IBM, 4 gigabytes of memory and 160 gigabytes
of storage. They are connected together using Infiniband
interconnect technology and Gigabit Ethernet switches.
This Apple cluster gained its third place with a 10.3
teraflops ranking, and became only the third computer in
the world to achieve a performance of more than 10
teraflops.

10.3 teraflops is 10.3 trillion floating point operations
per second which means Virginia Tech's system is roughly
425 times faster at solving systems of linear equations than
USP's cluster. However, it uses 50 times more CPUs, has
much more hard disk space and memory, and utilizes a
much better networking infrastructure. Better networking
interconnections should be able to improve USP's
performance results as well. If the efficiency of the cluster
can be improved then the performance of the cluster will
increase even if no additional CPUs are added to the
system.

Because Linpack is highly scalable, the network and its
topology of multiple switches seem to be causing the
efficiency problem of the previous USP results. To prove
this experiment was devised in order to compare
efficiency. Three runs of 12 computing nodes each were
benchmarked. The only difference between them was the

 70

number of switches used. One run used 12 computing
nodes all on one switch. Another used 6 computing nodes
each on two switches for 12 in all. Finally the third used
four computing nodes each on three switches again for 12
in all.

In figure 3 we see a drop in the efficiency of the
twelve-node cluster as these nodes are distributed over
switches. First a efficiency of 52% over 1 switch is
achieved, which is consistent with results from table 1.
Then when these twelve nodes are distributed between 2
switches (six nodes each), the efficiency decreases from
above the 50% mark to about 42%. When comparing this
result to results from table 1 in which the efficiency of 28
nodes was measured with two switches, results are quite
similar. The minor difference of a few percentage points
could be said to be due to the increased number of nodes
(Luo et al. 2002). Finally when the same twelve nodes
were distributed among the three switches, a 34%
efficiency was measured. This again is quite comparable
to results from table 1 where 44 nodes were distributed
among the 3 switches.

Figure 3. This graph shows the efficiency of the cluster
when number of nodes are fixed but the number of
interconnecting switch changes.

4 CONCLUSION

This paper presents a 44 node parallel computing
environment with a peak performance rating of 24.20
billion floating point operations per second (gigaflops). It
has been constructed at zero cost to the University using
unused computing time from already existing USP
computing resources.

From the benchmark results presented, it can now be
said that inter-switch communication plays a vital role in
the performance of a parallel cluster such as the one
created at USP. Improving networking hardware to reduce
the switch count and increase switch performance should
increase the efficiency of the system and thus increase the
overall gigaflops rating. Research also shows that moving
from Fast Ethernet to Myrinet (Boden, 1995) or Gigabit
Ethernet (Innocente et al. 2000) provides faster
performance results due to data throughput increases and
communication latency decreases. However, as USP is
lacking this infrastructure it was not possible to test these
cases in this paper.

By opening the cluster to projects from all departments
in the University, it is hoped that a large number of
students and faculty will gain experience in running the

computing cluster. This critical mass of students, and the
involvement of numerous other faculty in the projects of
those students, will ensure that the cluster will continue to
operate at peak performance. Also, since the parallel
computing cluster can be controlled exclusively via a
network connection, other campuses of the University of
the South Pacific are able to easily have access to the
facilities via USPNet, the satellite network linking other
island countries to USP's Laucala campus in Fiji.

ACKNOWLEDGMENTS

The authors are very grateful to Nitesh Nand at the
USP Department of Maths and Computing Sciences and to
John Isles and Simon Greaves at USP Information
Technology Services for their technical assistance.

REFRENCES
1. Becker, D.J., Sterling, T., Savarese, D., Dorband, J.E.,

Ranawak, U.A. and Packer, C.V. 1995. Beowulf : A
parallel workstation for scientific computation. In
Proceedings, International Conference on Parallel
Processing.

2. Boden, N.J. 1995. Myrinet - a gigabit-per-second local-
area network. IEEE-Micro, 15(1), 29-36.

3. Dongarra, J. J., Bunch, J., Moler, C. and Stewart, G.W.
1986. LINPACK User's Guide. SIAM, Philadelphia, PA.

4. Feitelson, D. and Rudolph, L. 1995. Parallel job
scheduling : Issues and approaches. In Proceedings of
the 1st Workshop on Job Scheduling Strategies for
Parallel Processing.

5. Gropp, W., Lusk, E., Doss, N. and Skjellum, A. 1996.
A high-performance, portable implementation of the
message passing interface standard. Parallel Computing,
22(6), 789-828.

6. Hoffman, F.M. and Hargrove, W.W. 1999. Cluster
computing: Linux taken to the extreme. Linux Magazine,
1(1), 56-59.

7. Innocente, R., Corbatto, M. and Cozzini, S. 2000. A PC
cluster with high speed network interconnects. In CAPI
Calcolo ad Alte Prestazioni in Italia CILEA.

8. Luo, X.O., Gregory, E., Xi, H., Yang, J., Wang, Y. Lin,
Y. and Ying, H. 2002. High performance beowulf
computer for lattice qcd.

9. Meuer, H., Strohmaier, E., Dongarra, J.J. and Simon,
H.D. 2003. Current top 500 list.

10. Pacheco, P. 1996. Parallel Programming with MPI.
Morgan Kaufmann Publishers, San Francisco, CA.

11. Petitet, A., Whaley, R., Dongarra, J.J. and Clearly, A.
2000. Hpl - a portable implementation of the high
performance linpack benchmark for distributed-memory
computers.

12. Showerman, M. and Enos, J. 2004. Terascale cluster.
13. Sterling, T. 2001. Beowulf Cluster Computing with

Linux.

