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Abstract  

This paper deals with fuzzy goal programming (FGP) approach to stochastic multivariate stratified 

sampling with non linear objective function and probabilistic non linear cost constraint which is formulated as 
a multiobjective non linear programming problem (MONLPP). In the model formulation of the problem, we first 

determine the individual best solution of the objective functions subject to the system constraints and construct 

the non linear membership functions of each objective. The non linear membership functions are then 

transformed into equivalent linear membership functions by first order Taylor series at the individual best 

solution point. Fuzzy goal programming approach is then used to achieve maximum degree of each of the 

membership goals by minimizing negative deviational variables and finally obtain the compromise allocation. A 

numerical example is presented to illustrate the computational procedure of the proposed approach.   

Keywords: Multiobjective programming, multivariate stratified sampling, compromise allocation, fuzzy goal 

programming 

1. Introduction 

Fuzzy programming is based on the basic idea to 

determine a feasible solution that minimizes the 

largest weighted deviation from any goal. This is an 

optimization programme. It can be thought of as an 
extension or generalization of linear programming to 

handle multiple, normally conflicting objective 

measures. The use of the fuzzy set theory for decision 

problems with several conflicting objectives was first 

introduced by Zimmermann (1978). Thereafter, 

various versions of fuzzy programming (FP) have 

been investigated and widely circulated in literature. 

The use of the concept of membership function of 

fuzzy set theory for satisfactory decisions was first 

introduced by Lai in 1996. To formulate the FGP 

Model of the problem, the fuzzy goals of the 

objectives are determined by determining individual 
optimal solution. The fuzzy goals are then 

characterized by the associated membership functions 

which are transformed into linear membership 

functions by first order Taylor series. Recently many 

authors discuss fuzzy goal programming approach in 

different fields, some of them are Parra et al. (2001) 

who use this approach to portfolio selection problem, 

Sharma et al. (2007) work in the field of agriculture 

land allocation problems, Pramanik et al. (2011) 

apply FGP approach to Quadratic Bi-Level 

Mutiobjective Programming Problem (QBLMPP), 
Paruang et al. (2012) presents FGP model for 

machine loading problem and minimize an average 

machine error and the total setup time, Pramanik & 

Banerjee (2012) in transportation, Haseen et al. 

(2012) and Gupta et al. (2012) in sample surveys etc.   

The problem of allocation for a multivariate 

stratified survey becomes complicated because an 

allocation that is optimal for one characteristic is 

usually far from optimal for other characteristics 

unless the characteristics are highly correlated. In 

such situations, i.e. in multivariate stratified surveys, 

we need a compromise criterion that gives an 

allocation which is optimum for all characteristics in 

some sense and we have to consider the allocation 
problem as a Multiobjective Non Linear 

Programming Problem (MNLPP) in which individual 

variances are to be minimized simultaneously subject 

to the cost constraint. Such an allocation may be 

called a “Compromise Allocation”. Many authors 

have discussed the multivariate sample allocation 

problem. Among them are Kozak (2006), Diaz-

Garcia and Cortez (2008), Khan et al. (2010), 

Khowaja et al. (2011). Diaz-Garcia et al. (2007) dealt 

with the case when sampling variances are random in 

the constraints. Javaid and Bakhshi (2009) considered 

the case of random costs and used modified E- model 
for solving the problem. Bakhshi et al. (2010) find 

the optimal Sample Numbers in Multivariate 

Stratified Sampling with a Probabilistic Cost 

Constraint. Recently, some other authors who discuss 

stochastic programming in sample surveys are Ali et 

al. (2013), Khan et al. (2011, 2012), Ghufran et al. 

(2011), Raghav et al. (2014), etc.  

In the present paper the problem of finding the 

optimum compromise allocation is formulated as 

Multiobjective Non Linear Programming Problem 

(MNLPP) and a Fuzzy Goal Programming (FGP) 
approach is used to work out the compromise 

allocation in multivariate stratified surveys in which 

we define the membership functions of each objective 

function and then transform membership functions 

into equivalent linear membership functions by first 

order Taylor series and finally by forming a fuzzy 

goal programming model obtain a desired 

compromise allocation. A numerical example is also 

worked out to illustrate the computational details of 

the proposed approach.   

http://en.wikipedia.org/wiki/Linear_programming
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2.  Problem Formulations 
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the 
thj  character in the 

thh   stratum. Let C be the 

upper limit on the total cost of the survey. The 

problem of optimal sample allocation involves 

determining the sample sizes Lnnn .,..,, 21  that 

minimize the variances of various characters under 

the given sampling budget C. Within any stratum the 

linear cost function is appropriate when the major 

item of cost is that of taking the measurements on 

each unit. If travel costs between units in a given 
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where Lhch ,...,2,1;   denote the per unit cost of 

measurement in the 
thh  stratum, 

ht  is the travel cost 

for enumerating on a unit the 
thj character in the 

thh stratum and 
0c  is the  overhead cost.
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are introduced to obtain the estimates of the stratum 

variances and to avoid the problem of oversampling. 
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and ignoring the term independent of hn , the 

allocation problem
 
can be written as the following 

problem:

 

pj

LhNnand

CcntnctoSubject

n

SW
Minimize

hh

L

h

L

h

hhhh

L

h h

jhh

,...,2,1

.,..,2,1;2

1 1

0

1

22




















 



 



                                   (3)

 

In many practical situations the measurement cost 

hc
 
and the travel cost 

ht  in the various strata are not 

fixed and may be considered as random. Let us 

assume that 
hc  and 

ht , Lh ,...,1  are independently 

normally distributed random variables. 

The formulated MNLPP (3) can be written in the 

following chance constrained programming form as:
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where
0p , 10 0  p  is a specified probability. 

 

The costs 
hc

 
and

 ht ,
  

Lh ,...,1
 
have been 

assumed to be independently normally distributed 

random variables. Then the function defined in (2), 

will also be normally distributed with mean 
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Now in multivariate stratified sample surveys the 
problem of allocation with p independent 

characteristics is formulated as a Multiobjective 

Nonlinear programming problem (MNLPP). The 

objective is to minimize the individual variances of 
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To solve the problem (12) using stochastic 

programming, we first solve the following p Non 

Linear Programming Problems (NLPPs) for all the 

‘p’ characteristics separately. The equivalent 

deterministic non linear programming problem to the 

stochastic programming problem is given by
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A reasonable criterion to work out a compromise 

allocation may be to ‘Minimize the sum of the 

variances pjV j ,...,2,1;  ’. But in this paper a 

new approach called “Fuzzy Goal Programming” is 

used to obtain a compromise allocation and discussed 

in next section.            

3. Compromise Solution Using Fuzzy Goal 

Programming 

Present approach is discussed by Pramanik et al. 

(2011) and Pramanik and Banerjee (2012) and here 

the approach is used in accordance with the above

formulated problem. 

We now formulate the fuzzy programming model 

of multiobjective programming problem by 

transforming the objective functions               

          into fuzzy goals by means of assigning an 
imprecise aspiration level to each of them. Let 
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tolerance limits of the fuzzy objective goals. 

Now the problem can be given as: 

 

 

                                                   
       

                      

 

   

 

   

          
 

 

   

  
      

   

 

   

   

       

                                   
  
 

  
 

                       

3.1 Linearization of the Non Linear Membership 

Functions by First Order Taylor Series 

Let    
    

          p   h         be the individual 

best solutions of the non linear membership functions 

subject to the constraints. Now, we transform the  

 

non-linear membership functions                  p 

into equivalent linear membership functions at 

individual best solution point by first order Taylor 

series as follows: 

 

             
            

     
 

   

      
              

     
 

   

      
             

3.2 Fuzzy Goal Programming Model of Multiobjective NLPP  

The NLPP represented by (15) reduces to the following problem: 
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The maximum value of a membership function is 

unity (one), so for the defined membership functions 

in (16), the flexible membership goals having the 

aspiration level unity can be presented as: 
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4. Numerical Illustration 

In the table below the stratum sizes, stratum 

weights, stratum standard deviations, measurement 

costs, and the travel costs within stratum are given for 

four different characteristics under study in a  

 

 
population stratified in five strata. The data are 

mainly from Chatterjee (1968). The values of strata 

sizes are added assuming the population size as 6000. 

The total budget of the survey is assumed to be 1500 

units with an overhead cost = 300 units.  

Table 1. Values of     ,    ,    ,    and     for five strata and four characteristics. 

 

 

 

 

 

 

 

 
 

 

 

In this problem                                   

are independently normally distributed random 

variables with known means and standard deviations 

E(   ) = 1, E(   ) = 1, E(   ) = 1.5, E(   ) = 1.5 and 

E(   ) = 2 

E(  )= 0.5, E (  )= 0.5, E (  )= 1, E(  ) =1, E (  ) 
=1.5  

V (   ) = 0.25, V (   ) = 0.25, V (   ) = 0.35, V (   ) 

= 0.35 and V (   ) = 0.45. 

V(  )=  0.125, V(  )= 0.125, V(  )= 0.175, V(  )= 

0.175 V(  )= 0.225.  

Using the values given in Table 1 the MONLPP 

and their optimal solutions   
            with the 

corresponding values of   
  are listed below. These 

values are obtained by software LINGO. 
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1     1500         0.25             28            206             38          120 

2     1920         0.32             24            133             26          184 

3     1260         0.21             32            48              44           173 

4     480           0.08             54            37              78            92 

5     840           0.14             67            9                76           117 
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The corresponding value of the variance ignoring 

finite population correction (fpc) is   
  2.148212. 

The optimum allocation   
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The corresponding value of the variance ignoring 

finite population correction (fpc) is   
   18.12507. 
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The corresponding value of the variance ignoring 

finite population correction (fpc) is   
   3.346324. 

The optimum allocation n
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The corresponding value of the variance ignoring 

finite population correction (fpc) is   
   36.19729. 

Now the payoff matrix is 
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Here the upper and lower tolerance limits can be 

given as: 

 

  
             

           

  
             

           

  
             

           

  
             

           
 

The non-linear membership functions can be 

formulated as: 

 

             
               

                 
 

             
               

                 
 

                           
               

                 
 

                           
               

                 
 

 

The membership function        is maximal at the 

point (132.999, 143.2324, 107.7228, 72.3840, 

127.6964),        is maximal at the point (303.1810, 

259.2840, 60.5848, 18.3975, 6.6782),          is 
maximal at the point (142.0023, 126.7286, 117.2123, 

82.6231, 117.3308) and           is maximal at the 

point (139.7336, 246.2649, 139.3793, 31.8239, 

59.5315) respectively. 

Then, the non-linear membership functions are 

transformed into linear at the individual best solution 

point by first order Taylor polynomial series as 

follows: 

 

                                                                      
                                                

                                                                      
                                               

                                                                       
                                                

                                                                       
                                                

 

Then, the FGP model for solving MNLPP is  formulated as follows:  
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By solving the FGP model by software LINGO, we 
get the optimal solution as: 

79and37,95,214,198 54321  nnnnn with 

a total of 623. Corresponding to this allocation the 

values of the variances for the four characters are 

obtained as 

49937.39,163389.4,18591.23,616561.2 4321  VVVV

 with the total cost consumption for conducting the 

survey i.e. 1200C  units. 

5. Conclusion  

In this paper Multiobjective non linear 

programming problem with probabilistic cost 

constraint is formulated. To obtain the compromise 

allocation a new approach is proposed called Fuzzy 

Goal Programming. In the proposed approach non 

linear membership functions are defined which are 
linearized by first order Taylor series. And the FGP 

model is solved by an optimizing software Lingo. 
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