Soil Research Soil Research Society
Soil, land care and environmental research
REVIEW

The role of biochar in modifying the environmental fate, bioavailability, and efficacy of pesticides in soils: a review

Rai S. Kookana
+ Author Affiliations
- Author Affiliations

CSIRO Sustainable Agriculture Research Flagship, PMB 2, Glen Osmond, NSW 5064, Australia. Email: Rai.Kookana@csiro.au

Australian Journal of Soil Research 48(7) 627-637 https://doi.org/10.1071/SR10007
Submitted: 5 January 2010  Accepted: 28 April 2010   Published: 28 September 2010

Abstract

The role of biochar in sequestration of carbon, reducing the emission of greenhouse gases, and improving the soil fertility is increasingly being recognised and is leading to the recommendations of biochar amendment of soils. However, the implications of such amendments to the environmental fate and efficacy of pesticides are not well understood. The published work on the role of black carbon (which includes charcoal, soot, and other pyrolytic carbon materials) in the environmental fate and effect of organic contaminants is reviewed here, together with the studies on bioavailability and efficacy of some herbicides in soils amended with freshly produced biochars. Biochars, due to their unique properties especially their highly carbonaceous and aromatic nature and high specific surface area, have been reported to be up to >2000 times more effective than soil in sorbing pesticides. The incorporation of relatively small amounts of fresh biochars in soil (0.05% by wt) has also been shown to inhibit the microbial degradation of organic compounds including pesticides as well as reduce their plant availability and efficacy. Based on limited published research on biochars and related research on black carbon reviewed here, biochar amendments to soils are likely to reduce the bioavailability and efficacy of pesticides. Furthermore, these amendments can influence the potential accumulation and ecotoxicological impact of pesticides and other organic contaminants in the soil environment. The implications of heterogeneity and ageing of biochars applied to soils for sorption and desorption processes and in turn for other environmental fate processes need to be understood to seek the appropriate balance between carbon sequestration and pesticide efficacy. While biochar amendment of soil holds appeal from a carbon accounting and soil conditioning perspective, further research is urgently required to determine how biochar influences the efficacy and environmental fate of agrochemicals such as pesticides.

Additional keywords: biochar, black carbon, pesticides, efficacy, carbon sequestration, ecosystem health.


Acknowledgments

I would like to acknowledge the contributions of several of my colleagues who conducted research and co-authored articles with me on this topic over the years. In particular, I would like to acknowledge contributions by G. G. Ying, X. Y. Yu, Ludger Bornemann, Ron Smernik, Riaz Ahmad, Jan Skjemstad, Neera Singh, and Evelyn Krull.


References


Abelmann K, Kleineidam S, Knicker H, Grathwohl P, Kögel-Knabner I (2005) Sorption of HOC in soils with carbonaceous contamination: influence of organic-matter composition. Journal of Plant Nutrition and Soil Science 168, 293–306.
CrossRef | CAS | open url image1

Accardi-Dey A, Gschwend PM (2003) Reinterpreting literature sorption data considering both absorption into organic carbon and adsorption onto black carbon. Environmental Science & Technology 37, 99–106.
CrossRef | CAS | PubMed | open url image1

Ahangar AG, Smernik RJ, Kookana RS, Chittleborough DJ (2008) Separating the effects of organic matter–mineral interactions and organic matter chemistry on the sorption of diuron and phenanthrene. Chemosphere 72, 886–890.
CrossRef | CAS | PubMed | open url image1

Ahmad R, Kookana RS, Alston AM, Skjemstad JO (2001) The nature of soil organic matter affects the sorption of pesticides. 1. Relationship with carbon chemistry as determined by 13C CPMAS NMR spectroscopy. Environmental Science & Technology 35, 878–884.
CrossRef | CAS | PubMed | open url image1

Ahmad R, Kookana RS, Mallavarapu M, Alston AM (2004) Aging reduces the bioavailability of even a weakly sorbed pesticide (carbaryl) in soil. Environmental Toxicology and Chemistry 23, 2084–2089.
CrossRef | CAS | PubMed | open url image1

Alexander M (1995) How toxic are toxic chemicals in soil? Environmental Science & Technology 29, 2713–2717.
CrossRef | CAS | open url image1

Bornemann LC, Kookana RS, Welp G (2007) Differential sorption behaviour of aromatic hydrocarbons on charcoals prepared at different temperatures from grass and wood. Chemosphere 67, 1033–1042.
CrossRef | CAS | PubMed | open url image1

Bracmort KS (2009) Biochar: examination of an emerging concept to mitigate climate change. Congressional Research Service. 7-5700, CRS Report No. R40186. Available at: http://ncseonline.org/NLE/CRs/abstract.cfm?NLEid=2216

Braida WJ, Pignatello JJ, Lu Y, Ravikovitch PI, Naimark AV, Xing B (2003) Sorption hysteresis of benezene in charcoal particles. Environmental Science & Technology 37, 409–417.
CrossRef | CAS | PubMed | open url image1

Brusseau ML, Rao PSC (1989) Sorption nonideality during organic contaminant transport in porous media. CRC Critical Reviews in Environmental Control 19, 33–99.
CrossRef | CAS | open url image1

Chiou CT, Porter PE, Schmeddling DW (1983) Partition equilibria of nonionic organic compounds between soil organic matter and water. Environmental Science & Technology 17, 227–231.
CrossRef | CAS | open url image1

Chun Y, Sheng GY, Chiou CT, Xing BS (2004) Compositions and sorptive properties of crop residue-derived chars. Environmental Science & Technology 38, 4649–4655.
CrossRef | CAS | PubMed | open url image1

Glaser B, Haumaier L, Guggenberger G, Zech W (2001) The ‘terra preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88, 37–41.
CrossRef | CAS | PubMed | open url image1

Goldberg ED (1985) ‘Black carbon in the environment.’ (John Wiley & Sons: New York)

Huang WL, Peng PA, Yu ZQ, Fu JM (2003) Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments. Applied Geochemistry 18, 955–972.
CrossRef | CAS | open url image1

Hunter WH , Gan J , Kookana RS (2010) Bioavailability of hydrophobic organic contaminants in soils and sediments. In ‘Biophysico-chemical processes of anthropogenic organic compounds in environmental systems’. (Eds PM Huang, N Senesi) (John Wiley & Sons: Hoboken, NJ) (in press)

James G, Sabatini DA, Chiou CT, Rutherford D, Scott AC, Karapanagioti HK (2005) Evaluating phenanthrene sorption on various wood chars. Water Research 39, 549–558.
CrossRef | CAS | PubMed | open url image1

Jenkinson DS (1990) The turnover of organic carbon and nitrogen in soil. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 329, 361–368.
CrossRef | CAS | open url image1

Jonker MTO, Hoenderboom AM, Koelmans AA (2004) Effects of sedimentary sootlike materials on bioaccumulation and sorption of polychlorinated biphenyls. Environmental Toxicology and Chemistry 23, 2563–2570.
CrossRef | CAS | PubMed | open url image1

Karapanagioti HK, Kleineidam S, Sabatini DA, Grathwohl P, Ligouis B (2000) Impacts of heterogeneous organic matter on phenanthrene sorption: equilibrium and kinetic studies with aquifer material. Environmental Science & Technology 34, 406–414.
CrossRef | CAS | open url image1

Kookana RS, Baskaran S, Naidu R (1998) Pesticide fate and behaviour in Australian soils in relation to contamination and management of soil and water: a review. Australian Journal of Soil Research 36, 715–764.
CrossRef | CAS | open url image1

Kuhlbusch T, Andreae M, Cachier H, Goldammer J, Lacaux J-P, Shea R, Crutzen P (1996) Black carbon formation by savanna fires: measurements and implications for the global carbon cycle. Journal of Geophysical Research 101, 23 651–23 665.
CrossRef | CAS | open url image1

Lohmann R, Mac Farlane JK, Gschwend PM (2005) Importance of black carbon to sorption of native PAHs, PCBs, and PCDDs in Boston and New York harbour sediments. Environmental Science & Technology 39, 141–148.
CrossRef | CAS | PubMed | open url image1

Luthy RG, Aiken GR, Brusseau ML, Cunningham SD, Gschwend PM, Pignatello JJ, Reinhard M, Traina SJ, Weber WJ, Westall JC (1997) Sequestration of hydrophobic organic contaminants by geosorbents. Environmental Science & Technology 31, 3341–3347.
CrossRef | CAS | open url image1

Macleod CJA, Semple KT (2003) Sequential extraction of low concentrations of pyrene and formation of non-extractable residues in sterile and non-sterile soils. Soil Biology & Biochemistry 35, 1443–1450.
CrossRef | CAS | open url image1

McLeod PB, Van Den Heuvel-Greve MJ, Allen-King RM, Luoma SN, Luthy RG (2004) Effects of particulate carbonaceous matter on the bioavailability of benzo[a]pyrene and 2,2′,5,5′-tetrachlorobiphenyl to the clam, Macoma balthica. Environmental Science & Technology 38, 4549–4556.
CrossRef | CAS | PubMed | open url image1

McLeod PB, Van Den Heuvel-Greve MJ, Luoma SN, Luthy RG (2007) Biological uptake of polychlorinated biphenyls by Macoma balthica from sediment amended with activated carbon. Environmental Toxicology and Chemistry 26, 980–987.
CrossRef | CAS | PubMed | open url image1

Millward RN, Bridges TS, Ghosh U, Zimmerman JR, Luthy RG (2005) Addition of activated carbon to sediments to reduce PCB bioaccumulation by a polychaete (Neanthes arenaceodentata) and an amphipod (Leptocheirus plumulosus). Environmental Science & Technology 39, 2880–2887.
CrossRef | CAS | PubMed | open url image1

Nam K, Alexander M (1998) Role of nanoporosity and hydrophobicity in sequestration and bioavailability: tests with model solids. Environmental Science & Technology 32, 71–74.
CrossRef | CAS | open url image1

Patterson WA, Edwards KJ, Maguire DJ (1987) Microscopic charcoal as a fossil indicator of fire. Quaternary Science Reviews 6, 3–23.
CrossRef | open url image1

Pietikainen J, Kiikkila O, Fritze H (2000) Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89, 231–242.
CrossRef | CAS | open url image1

Raison RJ (1979) Modifications of the soil environment by vegetation fires: a review. Plant and Soil 51, 73–108.
CrossRef | CAS | open url image1

Sander M, Pignatello JJ (2005) Characterization of charcoal adsorption sites for aromatic compounds: insights drawn from single-solute and bi-solute competitive experiments. Environmental Science & Technology 39, 1606–1615.
CrossRef | CAS | PubMed | open url image1

Schaumann GE (2006) Soil organic matter beyond molecular structure part I: macromolecular and supramolecular characteristics. Journal of Plant Nutrition and Soil Science 169, 145–156.
CrossRef | CAS | open url image1

Schmidt MWI, Noack AG (2000) Black carbon in soils and sediments: analysis, distribution, implication, and challenges. Global Biogeochemical Cycles 14, 777–793.
CrossRef | CAS | open url image1

Scott AC (1989) Observations on nature and origin of fusain. International Journal of Coal Geology 12, 443–475.
CrossRef | CAS | open url image1

Semple KT, Morriss AWJ, Paton GI (2003) Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. European Journal of Soil Science 54, 809–818.
CrossRef | CAS | open url image1

Shafizadeh F (1984) The chemistry of pyrolysis and combustion. In ‘The chemistry of solid wood’. (Ed. RM Rowell) pp. 481–529. (American Chemical Society: Washington, DC)

Singh B, Singh BP, Cowie AL (2010) Characterisation and evaluation of biochars for their application as a soil amendment. Australian Journal of Soil Research 48, 516–525. open url image1

Singh N, Kookana RS (2009) Organo-mineral interactions mask the true sorption potential of biochars in soils. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes 44, 214–219.
CrossRef | CAS | PubMed | open url image1

Skjemstad JO , Clarke P , Golchin A , Oades JM (1997) Characterization of soil organic matter by solid-state 13C NMR spectroscopy. In ‘Driven by nature: plant litter quality and decomposition’. (Eds G Cadish, KE Giller) pp. 253–271. (CAB International: Wallingford, UK)

Smernik RJ, Kookana RS, Skjemstad JO (2006) NMR characterization of 13C-benzene sorbed to natural and prepared charcoals. Environmental Science & Technology 40, 1764–1769.
CrossRef | CAS | PubMed | open url image1

Spokas KA, Koskinen WC, Baker JM, Reicosky DC (2009) Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides on Minnesota soil. Chemosphere 77, 574–581.
CrossRef | CAS | PubMed | open url image1

Tao S, Xu F, Liu W, Cui Y, Coveney RM (2006) A chemical extraction method for mimicking bioavailability of polycyclic aromatic hydrocarbons to wheat grown in soils containing various amounts of organic matter. Environmental Science & Technology 40, 2219–2224.
CrossRef | CAS | PubMed | open url image1

Toth J, Milham PJ (1975) Activated-carbon and ash-carbon effects on the adsorption and phytotoxicity of diuron. Weed Research 15, 171–176.
CrossRef | CAS | open url image1

Toth J, Milham PJ, Kaldor CJ (1999) Decreased phytotoxicity of diuron applied over ash of recently burned kangaroo grass (Themeda australis (R.Br.) Stapf). Plant Protection Quarterly 14, 151–154.
CAS |
open url image1

Toth J, Milham PJ, Raison JM (1981) Ash from rice stubble inactivates thiobencarb and molinate. Weed Research 21, 113–117.
CrossRef | CAS | open url image1

Weber WJ, Mcglnley PM, Katz LE (1992) A distributed reactivity model for sorption by soils and sediments. 1. Conceptual basis and equilibrium assessment. Environmental Science & Technology 26, 1955–1962.
CrossRef | CAS | open url image1

Xu C, Liu W, Sheng GD (2008) Burned rice straw reduces the availability of clomazone to barnyardgrass. The Science of the Total Environment 392, 284–289.
CrossRef | CAS | PubMed | open url image1

Yu XY, Pan LG, Ying GG, Kookana RS (2010) Enhanced and irreversible sorption of pesticide pyrimethanil by soil amended with biochars. Journal of Environmental Sciences 22, 615–620.
CrossRef | CAS | open url image1

Yu XY, Ying GG, Kookana RS (2006) Sorption and desorption behaviors of diuron in soils amended with charcoal. Journal of Agricultural and Food Chemistry 54, 8545–8550.
CrossRef | CAS | PubMed | open url image1

Yu XY, Ying GG, Kookana RS (2009) Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere 76, 665–671.
CrossRef | CAS | PubMed | open url image1

Yang YN, Sheng GY (2003) Enhanced pesticide sorption by soils containing particulate matter from crop residue burns. Environmental Science & Technology 37, 3635–3639.
CrossRef | CAS | PubMed | open url image1

Yang YN, Sheng GY, Huang M (2006) Bioavailability of diuron in soil containing wheat- straw-derived char. The Science of the Total Environment 354, 170–178.
CrossRef | CAS | PubMed | open url image1

Zhang P, Sheng GG, Feng Y, Miller DM (2005) Role of wheat-residue-derived char in the biodegradation of benzonitrile in soil: Nutritional stimulation versus adsorptive inhibition. Environmental Science & Technology 39, 5442–5448.
CrossRef | CAS | PubMed | open url image1

Zhu D, Pignatello JJ (2005) Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model. Environmental Science & Technology 39, 2033–2041.
CrossRef | CAS | PubMed | open url image1

Zhu D, Kwon S, Pignatello JJ (2005) Adsorption of single ring organic compounds to wood charcoals prepared under different thermochemical conditions. Environmental Science & Technology 39, 3990–3998.
CrossRef | CAS | PubMed | open url image1








Rent Article (via Deepdyve) Export Citation Cited By (112)