Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Producing biochars with enhanced surface activity through alkaline pretreatment of feedstocks

K. Hina A , P. Bishop A , M. Camps Arbestain A E , R. Calvelo-Pereira B , J. A. Maciá-Agulló C , J. Hindmarsh D , J. A. Hanly A , F. Macías B and M. J. Hedley A

A Institute of Natural Resources, Private Bag 11222, Massey University, Palmerston North 4442, New Zealand.

B Departamento de Edafología y Química Agrícola, Facultad de Biología, Universidad de Santiago de Compostela, 15782-Santiago, Spain.

C Instituto Nacional del Carbón (CSIC), Apartado 73, 33080-Oviedo, Spain.

D Institute of Food, Nutrition and Human Health, Massey University, Palmerston North 4442, New Zealand.

E Corresponding author. Email: m.camps@massey.ac.nz

Australian Journal of Soil Research 48(7) 606-617 http://dx.doi.org/10.1071/SR10015
Submitted: 5 January 2010  Accepted: 14 May 2010   Published: 28 September 2010

Abstract

Surface-activated biochars not only represent a useful carbon sink, but can also act as useful filtering materials to extract plant nutrients (e.g. NH4+) from wastes (e.g. animal or municipal waste streams) and added thereafter to soils. Biochars produced by low-temperature pyrolysis of fibrous debarking waste from pine (PI) and eucalyptus (EU) were pre-treated with either diluted (L) or undiluted (S) alkaline tannery waste (L-PI, S-PI, L-EU, S-EU). Biochars produced from untreated feedstock were used as controls. Samples were characterised by FT-IR, solid-state CP MAS 13C NMR, XPS, SEM microphotographs, and BET specific surface area. Elemental composition, carbon recovery, yield, surface charge, and NH4+ sorption/desorption properties were also studied.

Carbon recovery was lower in biochars prepared from L-EU and S-EU (43 and 42%, respectively) than in control EU (45%) but these biochars showed greater changes in their chemical characteristics than those made from L-PI and S-PI, which showed minimal decrease in recovered carbon. The specific surface area of the biochars decreased with treatments, although acidic surface groups increased. In subsequent sorption experiments, treated biochars retained more NH4+ from a 40 mg N/L waste stream (e.g. 61% retention in control EU and 83% in S-EU). Desorption was low, especially in treated biochars relative to untreated biochars (0.1–2% v. 14–27%). The results suggest that surface activated biochars can be obtained with negligible impairment to the carbon recovered.

Additional keywords: acidic surface groups, ammonium retention, biochar, tannery waste.


References

Ahmedna M Marsall WE Rao RM 2000 Production of granular activated carbon from select agricultural by-products and evaluation of their physical, chemical and adsorption properties. Bioresource Technology 71 113 123 doi:10.1016/S0960-8524(99)00070-X

Arriagada R Garcia R Molina-Sabio M Rodriguez-Reinoso F 1997 Effect of steam activation on the porosity and chemical nature of activated carbons from Eucalyptus globulus and peach stones. Microporous Materials 8 123 130 doi:10.1016/S0927-6513(96)00078-8

Baldock JA Smernick RJ 2002 Chemical composition and bioavailability of thermally altered Pinus resinosa (red pine) wood. Organic Geochemistry 33 1093 1109 doi:10.1016/S0146-6380(02)00062-1

Bandosz TJ Petit C 2009 On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds. Journal of Colloid and Interface Science 338 329 345 doi:10.1016/j.jcis.2009.06.039

Bridgwater AV 2003 Renewable fuels and chemicals by thermal processing of biomass. Chemical Engineering Journal 91 87 102 doi:10.1016/S1385-8947(02)00142-0

Bundy LG Bremner JM 1972 A simple titrimetric method for determination of inorganic carbon in soils. Soil Science Society of America Journal 36 2 273 275 doi:10.2136/sssaj1972.03615995003600020021x

Chen X Jeyaseelan S Graham N 2002 Physical and chemical properties study of the activated carbon made from sewage sludge. Waste Management 22 755 760 doi:10.1016/S0956-053X(02)00057-0

Cheng CH Lehmann J Engelhard MH 2008 Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochimica et Cosmochimica Acta 72 1598 1610 doi:10.1016/j.gca.2008.01.010

Cheng CH Lehmann J Thies JE Burton SD Engelhard MH 2006 Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry 37 1477 1488 doi:10.1016/j.orggeochem.2006.06.022

Chiang HL Tsai JH Tsai CL Hsu YC 2000 Adsorption characteristics of alkaline activated carbon exemplified by water vapour, H2S and CH3SH gas. Separation Science and Technology 35 903 918 doi:10.1081/SS-100100200

David N , Shiraishi N (2000) Pulping chemistry. In ‘Wood and cellulosic chemistry’. pp. 859–899. (Mercel Dekker Inc. New York)

Duggan O Allen SJ 1997 Study of the physical and chemical characteristics of a range of chemically treated, lignite based carbons. Water Science and Technology 35 21 27 doi:10.1016/S0273-1223(97)00110-8

Emmerich FG Luengo CA 1996 Babassu charcoal: A sulfurless renewable thermo-reducing feedstock for steelmaking. Biomass and Bioenergy 10 41 44 doi:10.1016/0961-9534(95)00060-7

Faix O Jakab E Till F Szekely T 1988 Study on low mass thermal degradation products of milledwood lignins by thermogravimetry-mass-spectrometry. Wood Science and Technology 22 323 334 doi:10.1007/BF00353322

Gunzler H , Bock H (1990) ‘IR-Spektroskopie.’ (Verlag Chemie: Weinheim, Germany)

Guo Y Bustin RM 1998 FTIR spectroscopy and reflectance of modern charcoal and fungal decayed woods: Implications for studies of Inertinite in coals. International Journal of Coal Geology 37 29 53 doi:10.1016/S0166-5162(98)00019-6

Haberhauer G Rafferty B Strebl F Gerzabek MH 1998 Comparison of the composition of forest soil litter derived from three different sites at various decompositional stages using FTIR-spectroscopy. Geoderma 83 331 342 doi:10.1016/S0016-7061(98)00008-1

Ibarra JV Munoz E Moliner R 1996 FTIR study of the evolution of coal structure during coalification process. Organic Geochemistry 24 725 735 doi:10.1016/0146-6380(96)00063-0

Krull ES Swanston CW Skjemstad JO McGowan JA 2006 Importance of charcoal in determining the age and chemistry of organic carbon in surface soils. Journal of Geophysical Research 111 G4 G04001

Lee W Reucroft P 1999 Vapor adsorption on coal- and wood-based chemically activated carbons (III) NH3 and H2S adsorption in the low relative pressure range. Carbon 37 21 26
doi:10.1016/S0008-6223(98)00182-1

Lehmann J 2007 Biol.-energy in the black. Frontiers in Ecology and the Environment 5 381 387 doi:10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2

Lewis NG Yamamoto E 1990 Lignin: occurrence, biogenesis and biodegradation. Annual Review of Plant Biology 41 455 496 doi:10.1146/annurev.pp.41.060190.002323

Lillo-Ródenas MA Marco-Lozar JP Cazorla-Amoros D Linares-Solano A 2007 Activated carbons prepared by pyrolysis of mixtures of carbon precursor/alkaline hydroxide. Journal of Analytical and Applied Pyrolysis 80 166 174 doi:10.1016/j.jaap.2007.01.014

Linares-Solano A Lozano-Castello D Lillo-Rodenas MA Cazorla-Amoros D 2008 Carbon activation by alkaline hydroxides: preparation and reactions, porosity and performance. Chemistry and Physics of Carbon 30 1 62 doi:10.1201/9781420042993.ch1

Liu C Shao Y Jia DM 2008 Chemically modified starch reinforced natural rubber composites. Polymer 49 2176 2181 doi:10.1016/j.polymer.2008.03.005

López R Gondar D Iglesias A Fiol S Antelo J Arce F 2008 Acid properties of fulvic and humic acids isolated from two acid forest soils under different vegetation cover and soil depth. European Journal of Soil Science 59 892 899 doi:10.1111/j.1365-2389.2008.01048.x

Lozano-Castelló D Maciá-Agulló JA Cazorla-Amorós D Linares-Solano A Müller M Burghammer M Riekel C 2006 Isotropic and anisotropic microporosity development upon chemical activation of carbon fibers, revealed by microbeam small-angle X-ray scattering. Carbon 44 1121 1129 doi:10.1016/j.carbon.2005.11.019

Maciá-Agulló JA Moore BC Cazorla-Amorós D Linares-Solano A 2007 Influence of carbon fibres crystallinities on their chemical activation by KOH and NaOH. Microporous and Mesoporous Materials 101 397 405 doi:10.1016/j.micromeso.2006.12.002

Montane D Torné-Fernández V Fierro V 2005 Activated carbons from lignin: kinetic modeling of the pyrolysis of Kraft lignin activated with phosphoric acid. Chemical Engineering Journal 106 1 12 doi:10.1016/j.cej.2004.11.001

Petit C Kante K Bandosz TJ 2010 The role of sulphur-containing groups in ammonia retention on activated carbons. Carbon 48 654 667 doi:10.1016/j.carbon.2009.10.007

Pradhan BK Sandle NK 1999 Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon 37 1323 1332 doi:10.1016/S0008-6223(98)00328-5

Preston CM Trofymow JA Niw J Fyfe CA 1998 13CPMAS-NMR spectroscopy and chemical analysis of coarse woody debris in coastal forests of Vancouver Island. Forest Ecology and Management 111 51 68 doi:10.1016/S0378-1127(98)00307-7

Raymundo-Piñero E Azaïs P Cacciaguerra T Cazorla-Amorós D Linares-Solano A Béguin F 2005 KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon 43 786 795 doi:10.1016/j.carbon.2004.11.005

Raymundo-Piñero E Cazorla-Amorós D Linares-Solano A Find J Wild U Schlögl R 2002 Structural characterization of N-containing activated carbon fibers prepared from a low softening point petroleum pitch and a melamine resin. Carbon 40 597 608 doi:10.1016/S0008-6223(01)00155-5

Rodriguez-Reinoso F Molina-Sabio M 1992 Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview. Carbon 30 111 118

Sharma RK Wooten JB Baliga VL Lin X Chan WG Hajaligol MR 2004 Characterization of chars from pyrolysis of lignin. Fuel 83 1469 1482
doi:10.1016/j.fuel.2003.11.015

Smith DM Chughtai AR 1995 The surface structure and reactivity of black carbon. Colloids and Surfaces 105 47 77 doi:10.1016/0927-7757(95)03337-1

Stevenson FJ (1982) Ammonia reactions. In ‘Humus chemistry: genesis, composition, reactions’. pp. 101–105 (Wiley Interscience: New York).

Tatzber M Stemmer M Spiegel H Katzlberger C Haberhauer G Gerzabek MH 2007 An alternative method to measure carbonate in soils by FT-IR spectroscopy. Environmental Chemistry Letters 5 9 12 doi:10.1007/s10311-006-0079-5

Tiessen H Roberts T Stewart J 1983 Carbonate analysis in soils and minerals by acid digestion and two-endpoint titration. Communications in Soil Science and Plant Analysis 14 2 161 166 doi:10.1080/00103628309367352

Tsutsumi Y Kondo R Sakai K Imamura H 1995 The difference of reactivity between syringyl lignin and guaiacyl lignin in alkaline systems. Holzforschung 49 423 428 doi:10.1515/hfsg.1995.49.5.423

Van Soest PJ 1967 Development of a comprehensive system of feed analysis and the application to forages. Journal of Animal Science 26 119 128

Vassileva P Tzvetkova P Nickolov R 2009 Removal of ammonium ions from aqueous solutions with coal-based activated carbons modified by oxidation. Fuel 88 387 390
doi:10.1016/j.fuel.2008.08.016

Wang SK Wang K Liu Q Gu Y Luo Z Cen K Fransson T 2009 Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnology Advances 27 562 567 doi:10.1016/j.biotechadv.2009.04.010



Rent Article Export Citation Cited By (20)