Determination of carbonate-C in biochars

Tao Wang^{A,D}, Marta Camps-Arbestain^A, Mike Hedley^A, Bhupinder Pal Singh^B, Roberto Calvelo-Pereira^A, and Congying Wang^{A,C}

^ANew Zealand Biochar Research Centre, Private Bag 11222, Massey University, 4442 Palmerston North, New Zealand.

^BNSW Department of Primary Industries, PO Box 100, Beecroft, NSW 2119, Australia.

^CSchool of Environmental Science and Resources, Shanxi University, Taiyuan 030006, China.

^DCorresponding author. Email: twang0000@hotmail.com

Fig. S1. An apparatus used for trapping CO_2 evolved from biochar after the addition of HCl solution. The setup was slightly modified from Bundy and Bremner (1972).

Fig. S2. The calibration curve used for correcting concentration of CO₃-C in biochars according to a titrimetric method. Oven-dried CaCO₃ was used as a standard.

Fig. S3. A home-made manometer used for CO₂ volume measurement.

Fig. S4. Examples of deconvolution of peaks associated with carbonate decomposition.

Fig. S5. TG/DTGA curves of sample No1 and its residual after acid treatment.

Fig. S6. TG/DTG curves of selected samples. Samples were run in an air atmosphere.

Fig. S7. Relationship between the measured fixed C to total C ratio (FC/TC) and molar H to total C ratio (H/C). Values were collected from literature as shown in Table S3. Therefore, FC/TC can be estimated according to the following equation (Equation 6 in the manuscript): $FC/TC = -0.1081(H/C)^2 - 0.1794(H/C) + 1.0097$

where H/C is the molar ratio of H to total C of biochar. As >90% of the literature values used to obtain this equation corresponded to biochar samples low in ash (<20%) and therefore low in carbonate-C and inorganic H, the predicted data should reflect the ratios of FC/TC of low-ash biochars. Furthermore, the predictive accuracy of this model is apparently low for charred materials with a molar H/C ratio >1.

Poforonco	Decomposition temperature zones	Minerals		
Kelelence	(°C)	Minerais		
(Samtani et al. 2002;	two steps peaked at 772 and 834°C	dolomite		
Gunasekaran and Anbalagan	500-650	magnesite		
2007)	600-800	calcite		
(Frost et al. 2009)	520-595	synthetic calcite		
(Milodowski et al. 1989;	two steps peaked at 657 and $857^{\circ}C$	ankerite		
Vassileva and Vassilev 2005)	500-600	siderite		

Table S1. Decomposition temperature zones of common carbonate minerals at atmospheric CO₂ pressure

Table S2. Correlation matrix of carbonate-C in biochars determined by various methods
(including No 7)

acid wash	acid fumigation	titrimetric	TGA-N ₂	TGA-air
1.00*				
0.93*	1.00*			
0.93*	0.98*	1.00*		
0.95*	0.96*	0.98*	1.00*	
0.94*	0.96*	0.99*	0.99*	1.00*
	acid wash 1.00* 0.93* 0.93* 0.95* 0.94*	acid washacid fumigation1.00*0.93*1.00*0.93*0.93*0.95*0.96*0.94*0.96*	acid washacid fumigationtitrimetric1.00*	acid washacid fumigationtitrimetricTGA-N21.00*0.93*1.00*0.93*0.98*1.00*0.95*0.96*0.98*1.00*0.94*0.96*0.99*0.99*

*Significant at $\alpha = 0.05$.

Biochar	C ^A	H ^A	O^A	Fixed C $(\%)^{A}$	H/C ^B	O/C ^B	Molar Fixed C/C ^C	Reference
Pine wood100 (W100)	50.60	6.68	42.70	21.96	1.59	0.63	0.43	
W200	50.90	6.95	42.20	21.73	1.64	0.62	0.43	
W300	54.80	6.50	38.70	28.63	1.42	0.53	0.52	
W400	74.10	4.95	20.90	63.08	0.80	0.21	0.85	
W500	81.90	3.54	14.50	74.26	0.52	0.13	0.91	
W600	89.00	2.99	8.00	88.47	0.40	0.07	0.99	
W700	92.30	1.62	6.00	93.59	0.21	0.05	1.01	Keiluweit et al., 2010
Fescue straw100 (G100)	48.60	7.25	44.10	25.24	1.81	0.69	0.52	
G200	47.20	7.11	45.10	25.03	1.81	0.72	0.53	
G300	59.70	6.64	32.70	39.96	1.34	0.41	0.67	
G400	77.30	4.70	16.70	67.98	0.73	0.16	0.88	
G500	82.20	3.32	13.40	76.00	0.48	0.12	0.92	
G600	89.00	2.47	7.60	83.35	0.33	0.06	0.94	

 Table S3. An overview of selected chemical compositions of biochars

G700	94.20	1.53	3.60	88.72	0.20	0.03	0.94	
Mallee wood-RB (MW-RB)	49.00	6.70	44.10	18.98	1.64	0.68	0.39	
MW-LB	49.10	5.90	44.60	14.51	1.44	0.68	0.30	
MW-R300	59.10	5.90	34.70	34.01	1.20	0.44	0.58	
MW-L300	59.60	5.80	34.30	34.14	1.17	0.43	0.57	
MW-R500	84.20	3.80	11.50	77.93	0.54	0.10	0.93	
MW-R500	85.10	3.90	10.50	79.02	0.55	0.09	0.93	
MW-R750	89.70	1.50	8.20	89.58	0.20	0.07	1.00	
MW-L750	92.30	2.10	5.10	91.22	0.27	0.04	0.99	Wu et al., 2011
Mallee leaf-RB (ML-RB)	56.00	7.30	34.90	22.45	1.56	0.47	0.40	
ML-LB	56.70	7.50	33.70	16.63	1.59	0.45	0.29	
ML-R300	68.60	6.30	22.80	36.79	1.10	0.25	0.54	
ML-L300	68.50	6.30	23.00	39.50	1.10	0.25	0.58	
ML-R500	81.60	4.00	11.80	72.47	0.59	0.11	0.89	
ML-L500	81.30	3.90	12.30	74.48	0.58	0.11	0.92	
ML-R750	87.30	2.00	8.30	79.49	0.27	0.07	0.91	

ML-L750	90.70	2.00	4.70	84.24	0.26	0.04	0.93	_
Mallee bark-RB (MB-RB)	52.00	6.40	40.90	28.36	1.48	0.59	0.55	
MB-LB	49.30	7.00	42.10	14.19	1.70	0.64	0.29	
MB-R300	62.30	4.80	31.40	44.08	0.92	0.38	0.71	
MB-L300	63.90	5.20	29.30	47.09	0.98	0.34	0.74	
MB-R500	88.50	3.40	6.30	71.44	0.46	0.05	0.81	
MB-L500	82.20	3.40	12.70	78.40	0.50	0.12	0.95	
MB-R750	84.40	1.70	12.90	79.20	0.24	0.11	0.94	
MB-L750	87.00	2.00	9.90	83.14	0.28	0.09	0.96	
Corn stover	74.36	4.03	19.91	64.62	0.65	0.20	0.87	
Corn stover	72.55	4.62	21.26	59.76	0.76	0.22	0.82	
Corn stover	67.83	5.97	25.14	45.40	1.06	0.28	0.67	
Corn stover	66.59	5.53	26.52	48.73	1.00	0.30	0.73	Brewer et al., 2011
Corn stover	84.97	0.39	13.25	79.92	0.06	0.12	0.94	
Corn stover	87.28	2.87	7.58	82.37	0.40	0.07	0.94	
Switchgrass	76.41	4.48	18.14	65.69	0.70	0.18	0.86	

Switchgrass	92.17	4.30	2.26	73.09	0.56	0.02	0.79	
Switchgrass	85.19	3.84	9.89	71.52	0.54	0.09	0.84	
Switchgrass	83.23	1.31	14.75	75.00	0.19	0.13	0.90	
Switchgrass	83.23	0.94	14.65	77.53	0.13	0.13	0.93	
Switchgrass	79.89	1.74	17.72	64.69	0.26	0.17	0.81	
Switchgrass	83.79	2.76	11.91	84.76	0.40	0.11	1.01	
Red oak	81.50	3.55	14.20	75.54	0.52	0.13	0.93	
Mixed hardwood	85.12	2.58	11.82	81.27	0.36	0.10	0.95	
Wood waste	92.73	1.57	5.08	91.05	0.20	0.04	0.98	
Eastern hemlock	79.24	4.40	15.91	70.54	0.67	0.15	0.89	
Cotton stalk-250 (CS-250)	59.56	5.70	33.66	54.43	1.15	0.42	0.91	
CS-350	77.55	4.19	16.74	71.37	0.65	0.16	0.92	
CS-450	86.10	3.03	9.40	79.61	0.42	0.08	0.92	Cl
CS-550	90.26	2.14	6.12	85.69	0.28	0.05	0.95	Chen <i>et al.</i> , 2012
CS-650	91.62	1.19	5.84	89.63	0.16	0.05	0.98	
CS-750	91.88	1.20	5.39	91.42	0.16	0.04	1.00	

CS-850	92.14	0.86	5.66	91.38	0.11	0.05	0.99
CS-950	92.85	0.63	5.24	91.90	0.08	0.04	0.99

^AAll the selected parameters are recalculated on a dried ash-free (daf) basis;

^BH/C and O/C are molar ratios;

^CFixed C/C is the ratio of fixed C to total C content.

References

- Brewer, C., Unger, R., Schmidt-Rohr, K., Brown, R., 2011. Criteria to select biochars for field studies based on biochar chemical properties. BioEnergy Research 4, 312-323.
- Bundy L G and Bremner J M (1972) A simple titrimetric method for determination of inorganic carbon in soils. Soil Sci. Soc. Am. J. 36, 273-275.
- Chen, Y., Yang, H., Wang, X., Zhang, S., Chen, H., 2012. Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: Influence of temperature. Bioresource Technology 107, 411-418.
- Dean J A 1999 Lange's handbook of chemistry. McGRAW-HILL, INC.
- Frost R L, Hales M C and Martens W N 2009 Thermogravimetric analysis of selected group (ii) carbonateminerals — implication for the geosequestration of greenhouse gases. J. Therm. Anal. Calorim. 95, 999-1005.
- Gunasekaran, S., Anbalagan, G., 2007. Thermal decomposition of natural dolomite. Bulletin of Materials Science 30, 339-344.
- Keiluweit, M., Nico, P.S., Johnson, M.G., Kleber, M., 2010. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science & Technology 44, 1247-1253.
- Milodowski, A., Goodman, B., Morgan, D., 1989. Mossbauer spectroscopic study of the decomposition mechanism of ankerite in CO₂ atmosphere. Mineralogical Magazine 53, 465-471.
- Samtani M, Dollimore D and Alexander K S 2002 Comparison of dolomite decomposition kinetics with related carbonates and the effect of procedural variables on its kinetic parameters. Thermochim. Acta 392–393, 135-145.
- Vassileva C G and Vassilev S V 2005 Behaviour of inorganic matter during heating of bulgarian coals: 1. Lignites. Fuel Process. Technol. 86, 1297-1333.
- Wu, H., Yip, K., Kong, Z., Li, C.-Z., Liu, D., Yu, Y., Gao, X., 2011. Removal and recycling of inherent inorganic nutrient species in mallee biomass and derived biochars by water leaching. Industrial & Engineering Chemistry Research 50, 12143-12151.