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Abstract. Grain sorghum grown in north-eastern Australia’s cropping region increasingly requires nitrogen (N) fertiliser
to supplement the soil available N supply. The rates of N required can be high when fallows between crop seasons are
short (higher cropping intensities) and when yield potentials are high.

Fertiliser N is typically applied before or at crop sowing and is vulnerable to environmental loss in the period between
application and significant crop N demand due to potentially intense rainfall events in the summer-dominant rainfall
environment.

Nitrification inhibitors added to urea can reduce certain gaseous loss pathways but the agronomic efficacy of these
products has not been explored. Urea and urea coated with the nitrification inhibitor DMPP (3,4-dimethylpyrazole
phosphate) were compared in sorghum crops grown at five research sites over consecutive summer sorghum growing
seasons in south-east Queensland. Products were compared in terms of crop responses in dry matter, N uptake and grain
yield, with DMPP found to produce only subtle increases on grain yield. There was no effect on dry matter or N uptake.
Outcomes suggest any advantages from use of DMPP in this region are most significant in situations where higher
fertiliser application rates (>80 kgN/ha) are required.
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Introduction

North-eastern Australia has a subtropical cropping belt that
extends from the Liverpool Plains region of New South Wales
(~328S) to the Central Highlands of Queensland (~228S). Major
cropping soils are black, grey and brown Vertosols, black, red
or brown Sodosols, red and brown Chromosols and Ferrosols
(Webb et al. 1997). Since change in land use from grazing to
cultivation, native soil carbon and nitrogen (N) fertility has
reduced (Dalal and Mayer 1986) such that N is one of the most
limiting nutrients for grain production (Dalal and Probert 1997).

Agro-ecological conditions allow production of summer
and winter cereal, legume, oilseed and fibre crops, with sowing
primarily occurring once the soil profile accumulates sufficient
water to avoid crop failure from lack of soil water supply
(Freebairn et al. 1997). Fallows are essential for successful
dryland cropping in the region (Shaw 1997) and are a key
management tactic in rainfed farming (Freebairn et al. 2002).

Flexibility is therefore important when planning crop
sequences, and the term ‘opportunity cropping’ describes the
recommended approach (Russell and Jones 1996; Shaw 1997).
Opportunity cropping is the planting of a crop as soon as the soil

profile has stored sufficient moisture to ensure economic
viability; however, response to N fertiliser may alter with
cropping intensity under this framework as it may limit N
mineralisation from soil organic matter to fully meet crop
requirements.

Grain sorghum (Sorghum bicolor) is the dominant summer
cereal crop in the region (Unkovich et al. 2009) and responses to
fertiliser N have been shown to vary depending on the length
of the preceding fallow. Fallow lengths of >12 months (long-
fallow) have shown little or no response to fertiliser N; by
contrast, fallows of <6 months are highly N responsive on soils
with a cropping history of more than 30 years (Lester et al.
2008). Further intensification of cropping is required in attempts
to further increase food production, requiring larger and more
frequent inputs of fertiliser N. A proportion of this fertiliser can
be lost to the environment by gaseous (denitrification and
volatilisation) or water (leaching) mediated loss pathways,
with production of nitrous oxide (N2O), a potent greenhouse
gas, an issue of current concern. To improve the crop utilisation
of applied N, ‘enhanced efficiency fertilisers’ (EEFs) have the
potential to enhance the agronomic and recovery efficiencies of
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fertiliser, while simultaneously reducing its environmental
losses. One of the available approaches is the addition of a
nitrification inhibitor, which has a higher potential to reduce
N2O emissions from soil than other measures (Ruser and
Schulz 2015).

A preliminary study on a Vertosol comparing several EEFs
found the nitrification inhibitor 3,4-dimethylpyrazole phosphate
(DMPP) was highly effective at reducing annual N2O losses by
83% (or 1.91 kg N2O-N/ha.year), compared with standard urea,
but had no significant effect on grain yield or dry matter N
uptake of a grain sorghum crop (Scheer et al. 2016). De Antoni
Migliorati et al. (2014) reported that addition of DMPP to a
Ferrosol cropped to both wheat and maize in combination
substantially reduced N2O loss during the summer season,
when the majority of emissions occurred, and endorsed future
research focusing on fertilisation of the summer crop.

The aim of this study was to evaluate DMPP coated urea
and untreated urea in grain sorghum production systems with
differing cropping intensities grown on two contrasting soil
types (Ferrosol and Vertosol).

Materials and methods

Experimental site descriptions and crop agronomy

Research locations used where the J. Bjelke Petersen Research
Station (Kingaroy, 268340S, 1518500E) and Kingsthorpe
Research Station (west of Toowoomba, 278310S, 1518470E),
and a commercial property at the locality of Irongate in
southern Queensland (278350S, 1518300E). Climatically the
region is subtropical with warm humid summers and mild
dry winters. Soils are classified as manganic eutrophic Brown
Ferrosol at Kingaroy (Isbell 2002), and self-mulching Black
Vertosols at Kingsthorpe (Isbell 2002; Powell et al. 1988) and
Irongate (Beckmann and Thompson 1960; Isbell 2002).

Soil samples were collected to 1.2m using depth increments
shown in Table 1. Chemical methods for soil analysis were
conducted according to those described in Rayment and Lyons
(2011). Site bulk density was determined using the intact core
method of Cresswell and Hamilton (2002). Mineral N at sowing
was measured using the sum of depth increments (Table 1)
with nitrate and ammonium determined using method 7B1
(Rayment and Lyons 2011) multiplied by the bulk density for
the increment layer (Dalgliesh and Foale 1998). Plant available
water content (PAWC) was estimated using gravimetric
moisture at 1058C, site bulk density, and a sorghum crop
lower limit at analogous sites in accordance with Dalgliesh
and Foale (1998).

Comparison rates for urea and DMPP-treated urea (Entec®)
at Kingsthorpe in 2013–14 were 0, 40, 60, 80, 100 and 160 kgN/
ha (four replicates); at Kingaroy in both 2013–14 and 2014–15
were 0, 40, 60, 80, 100, 120 and 240 kgN/ha (three replicates
each year); and 0, 40, 80 and 160 kgN/ha for both Kingsthorpe
and Irongate in 2014–15 (six replicates each year). Nitrogen
treatments were band applied at 5 cm depth to the side of the
crop row at sowing, with the exception of the Irongate site
where an earlier sowing attempt (10 Sept 2014) was removed
with herbicide and replanted in December due to poor crop
establishment. Agronomic management at each site is
summarised in Table 2.

Aboveground biomass was collected at physiological
maturity (Vanderlip and Reeves 1972) from either 1 or 2m of
crop row, oven-dried at 658C, weighed and processed (mulched,
subsampled and finely ground to 0.5mm) for determination of N
concentration using the combustion (Dumas) method. Nitrogen
uptake at maturity (kg/ha) was calculated by multiplying the
aboveground biomass (kg/ha) by the biomass N concentration
(mg/kg). Grain was machine harvested from two crop rows and
grain yield calculated with correction to grain receival moisture

Table 1. Key chemical properties for profile soil layers of three field sites
TC, Total carbon; TN, total nitrogen; Col P, Colwell P; ECEC, effective cation exchange capacity

Exchangeable Cations
Depth
(m)

pH
(CaCl2)

TC
(%)

TN
(mg/kg)

Col P
(mg/kg)

Ca
(cmol/kg)

Mg
(cmol/kg)

Na
(cmol/kg)

K
(cmol/kg)

ECEC
(cmol/kg)

Method 4B2 6B2a 7A5 9B2 15D3

Kingaroy (Brown Ferrosol)
0.0–0.1 5.7 1.4 44 8.5 3.4 0.57 0.61 13.1
0.1–0.3 4.3 1.2 15 7.0 4.4 0.41 0.14 11.9
0.3–0.6 5.8 – 4.7 6.7 0.05 0.78 12.2
0.6–0.9 5.9 – 4.5 9.9 0.05 1.40 15.8
0.9–1.2 6.2 – 7.5 20.0 0.07 2.80 30.4

Kingsthorpe (Black Vertosol)
0.0–0.3 7.1 1.65 1150 27 29.3 26.2 0.59 2.19 58.2
0.3–0.6 21 29.7 26.6 0.56 2.22 59.1
0.6–0.9 – 25.6 25.2 0.66 3.95 55.4
0.9–1.2 – 23.6 24.2 0.78 5.41 54.0

Irongate (Black Vertosol)
0.0–0.1 7.1 1.66 1180 52 34.1 28.7 0.74 2.05 65.5
0.1–0.3 7.8 14 32.9 32.5 1.69 0.88 68.0
0.3–0.6 7.9 4 26.0 36.6 3.93 0.83 67.4
0.6–0.9 8.2 – 19.4 40.2 7.11 1.00 67.7
0.9–1.2 8.3 – 14.9 40.4 9.36 1.10 65.8
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of 13.5%. Agronomic efficiency (AE, kg/kg) has been defined
as the ratio of grain yield to N supply (Ladha et al. 2005) and is
applied here as:

AE ¼ ðYF � Y0Þ=Fn ¼ DY=DN

where YF is grain yield (kg/ha) in treatment with fertiliser N
applied per plot (FN, kg/ha) and Y0 is crop yield (kg/ha)
measured in a control treatment with nil fertiliser application.

Experimental design and statistical analysis

The experimental design at Kingaroy was a strip-plot for both
years (KRY13–14, KRY14–15) and a randomised complete
block design was used at Kingsthorpe (KTH13–14). Split-
plot designs with N rate randomly allocated to the main-plot
and the product randomly allocated to the sub-plots were used
in 2014–15 at both Kingsthorpe (KTH14–15) and Irongate
(IRN14–15).

The five trials (i.e. properties) were analysed together in a
linear mixedmodel framework fitting separate residual variances
for each experiment. Analyses were performed in GENSTAT 17th
edition using the REML procedure (VSN International 2015)
and the level of significance was set at the 5% level. The N rate
was treated as a continuous variable and the square of the N
rate was also added to account for curvature in the trend. Non-
significant terms between product and properties with the linear
and quadratic N rate were dropped from the final model. For
the dry matter and dry matter N uptake the number of plants
was used as a covariate, and if significant for the property this
was included in the cross–trial analysis. Predictions of the fitted
lines were made at N rates 0, 40, 60, 80, 100, 120, 160 for tables,
and at intervals of 10 from 0 to 160 for producing graphs.

The focus of this paper is on the comparison between the
two N products: DMPP and Urea. The agronomic measures
associated with the N rate responses presented in this paper
are a subset from a larger research program for publication at a
future date, including fertiliser N recovery and assessment of
N losses.

Results

A consolidated table of significant effects on dry matter, N
uptake and grain yield for the five sites indicates that the
interaction between N rate and property was significant for
all parameters (Table 3). The N product (Urea or DMPP) had
a significant interaction with grain yield.

Aboveground dry matter at maturity

The influence of starting mineral N level and in-crop rainfall on
overall fertiliser N responsiveness is seen in Fig. 1. The three
sites with low starting N are highly responsive KRY13–14
(Fig. 1a), KTH13–14 (Fig. 1b) and KTH14–15 (Fig. 1d), and
the remaining sites KRY14–15 (Fig. 1c) and IRN14–15 (Fig. 1e)
show smaller increases with N application.

Significant effects on dry matter growth did not include
product (i.e. DMPP v. Urea) either as a main effect or any
interaction with Property or N rate (Table 3). Plant number had a
significant effect and assisted in adjusting predicted means
based on varying crop establishment for some plots. The
significant Property�N rate interaction reflects the varying
scale of N response.

Dry matter N uptake

The N uptake at maturity was not significantly affected by the
N product (Table 3). The interaction between property and N
rate reflects the dry matter N uptake (data not shown) which is
analogous to that of dry matter itself (Fig. 1).

Grain yield

Grain yield increased with N rate at all sites except IRN14–15,
which showed no response (Fig. 2). The analyses showed an
overall difference in the curved lines across N levels for product
(Table 3); however, this trend was not strong enough to show

Table 2. Agronomic details of experiments comparing DMPP treatment against standard urea for five grain sorghum crops

Season 13–14 13–14 14–15 14–15 14–15

Site Kingaroy Kingsthorpe Kingaroy Kingsthorpe Irongate
ID KRY13–14 KTH13–14 KRY14–15 KTH14–15 IRN14–15
Sowing date 27 November 2013 10 December 2013 24 November 2014 29 October 2014 18 December 2014
N application date 27 November 2013 10 December 2013 24 November 2014 29 October 2014 10 September 2014
Cultivar Pioneer G22 Pacific MR43 Pioneer G22 Pacific MR43 Pacific MR Buster
Row spacing (m) 0.90 1.00 0.90 0.75 0.75
Mineral N to 1.2m (kg/ha) 60 62 127 65 89
PAWC to 1.2m (mm/ha) 140 87 105 111 179
Maturity biomass date 3 April 2014 8 April 2014 24 April 2015 13 February 2015 15 April 2015
In-crop rainfall (mm) 357 241 372 285 355
Harvest date 10 April 2014 05 May 2014 24 April 2015 5 March 2015 13 May 2015

Table 3. Consolidated table of significant effects on dry matter,
nitrogen uptake and grain yield of grain sorghum comparing Urea

and DMPP at five research sites
DT, dropped term; NS, not significant; *, significant at the 0.05 probability
level; **, significant at the 0.01 probability level; ***, significant at the 0.001

probability level

Fixed term Dry matter Nitrogen uptake Grain yield

Property *** *** ***
Product NS NS **
N_rate (lin) *** *** ***
N_rate (quad) *** *** ***
Property.N_rate (lin) *** *** ***
Property.N_rate (quad) *** DT ***
Product.N_rate (lin) DT DT NS
Product.N_rate (quad) DT DT *
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significant differences in product in the individual analyses of
each trial.

As the Product.Property term and its interactions with N
rate were not significant, we can explore the product effects
averaged over the properties. Plotting the predictions of grain
yield for DMPP and Urea suggests a slight efficiency gain
with DMPP of ~200 kg/ha in grain yield for N applied at 80
to 120 kgN/ha (Fig. 3) but there were no significant differences
between DMPP and Urea at any application rate so these
results should be interpreted cautiously. Addition of DMPP
increased the agronomic efficiency at the 80–120 kgN/ha by
�2.2 kg grain/kg fertiliser N. At 90% of maximum grain
yield the difference in N application rate between Urea and
DMPP was ~10 kgN/ha.

The significant product by N rate interaction on grain yield
(Table 3) was further explored for the three site years with the
greatest N response (KRY13–14, KTH13–14 and KTH14–15)
but no individual site produced any significant effects of product
or its interactions due to high variability in the data.

Discussion

Developing appropriate N management strategies that can be
adopted by farmers is crucial for improving crop production and
fertiliser N use efficiency, with the use of nitrification inhibitors
providing a potential management option (Fageria and Baligar

2005). The effectiveness of nitrification inhibitors (and other
EEFs) have been demonstrated to be strongly dependent on
site-specific conditions, soil texture and climate (Irigoyen et al.
2003). Reduction in N2O emissions over the summer period
from the use of DMPP-treated urea has been substantial (De
Antoni Migliorati et al. 2016; De Antoni Migliorati et al. 2015;
Scheer et al. 2016); however, there are no published studies
evaluating the agronomic impacts of DMPP-treated urea on
grain sorghum production in subtropical environments. Our
study found that DMPP had a nominal grain yield advantage
when considered over all the research sites in this study and this
was only apparent at the higher fertiliser N application rates
(Fig. 3).

A contradiction therefore exists between how DMPP can
decrease N2O emission by over 60% (De Antoni Migliorati
et al. 2016; De Antoni Migliorati et al. 2015; Scheer et al.
2016), but only nominally increases grain yield. The
explanation may partly lie in the higher N application rates. De
Antoni Migliorati et al. (2016) found that N2O emissions
increased exponentially with increasing urea N rate in both the
KRY13–14 and the KTH13–14 experiments, with the
incremental increase in emissions at Kingaroy representing
0.5% and 2.2% of added fertiliser N (0–80N and 80–120N
respectively), whereas at Kingsthorpe the incremental increase
represented 1.0% and 1.6% of added N fertiliser (0–80N and
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Fig. 1. Predicted dry matter (kg/ha) of grain sorghum at physiological maturity from Urea and DMPP treatments
at the five sites: (a) KRY13–14; (b) KTH13–14; (c) KRY14–15; (d) KTH14–15; and (e) IRN14–15. Error bars represent
standard error. There was no significant difference between the products.
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80–160N respectively). Conversely, the AE (kg extra grain
produced/kg additional N applied) decreased by 40%
(Kingaroy) and 20% (Kingsthorpe) for the higher N increment
(80–120 or 80–160 kgN/ha at Kingaroy and Kingsthorpe
respectively) compared with the first 80 kgN/ha applied at
each location (Fig. 2). Although emissions data for the 2014/15
studies are not yet available, the decrease in AE at higher

incremental N rates in the equivalent studies at both Kingaroy
and Kingsthorpe sites (KRY14–15 and KTH14–15) is again
evident (Fig. 2), and at the more N-responsive Kingsthorpe site,
the reduction in AE for the 80–160N increment relative to the
0–80N increment was >60%. Collectively, these data suggest
that the relative reduction in emissions at high N rates are likely
to always far exceed the incremental grain yield response to any
reduction in total N losses.

Although not significant at any individual site, the nominal
yield improvement from DMPP-treated urea is most likely
where N application rates are in excess of 80 kgN/ha.
Circumstances in which fertiliser rates in excess of 80 kgN/ha
would be required in this region include cereals under irrigation
(high crop N demand), in the higher rainfall areas where two
summer crops can be grown in succession with a 6–8-month
winter fallow, or where rainfall conditions allow double
cropping opportunities (i.e. summer sorghum immediately
following winter cereal harvest). At a long-term nitrogen�
phosphorus experimental site, sorghum crops grown on the 6–
8-month winter fallow had linear responses to N fertiliser rates
commonly up to 80 or 120 kgN/ha (Lester et al. 2008) and
average results across sites in this study suggest DMPP may
reduce application rate by ~10 kgN/ha.

DMPP is unlikely to be beneficial where the relative
contribution of fertiliser N to total crop supply is low, such
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as with higher starting mineral N profiles (i.e. typically fallows
>12 months, termed ‘long fallows’) or where crop N demands
are likely to be low due to use of moisture conservation
techniques such as double skip sowing (Whish et al. 2005). Our
results also suggest that at application rates <60 kgN/ha, there is
currently no benefit in using DMPP. The linear polynomial
contrast was not significant for product, therefore on that part of
the response surface the crop appears to have utilised equivalent
amounts of N from either DMPP or urea.

These findings were generated largely from research station
sites at which conditions were managed through pre-cropping
and mineral N removal to aid fertiliser responsiveness. This
contrasts with commercial production systems in which
farmers regularly apply N to meet water-limited yield potentials
(Strong and Holford 1997). Further examination of enhanced
efficiency fertilisers under commercially relevant conditions
would provide an improved N decision framework for farmers.
Conducting future studies using a common set of application
rates across the sites would improve the model fitting, and
comparing three or more products may allow better
differentiation of EFFs from urea-based fertilisers.

Conclusions

While there is consistent evidence that DMPP reduces N2O
emissions, particularly at higher N application rates, results
from our experiments are inconclusive for showing
consistently greater N fertiliser use efficiency in subtropical
grain sorghum production. However, agronomic efficiency
gains of ~2.2 kg grain/kg N were apparent at high application
rates in the range of 80–120 kgN/ha, with this increase
delivering a reduction in the optimum N application rate of
~10 kgN/ha.

DMPP appears more likely to be beneficial under irrigated
cropping with higher crop N demand and associated high N
fertiliser requirement, or in higher cropping intensity rainfed
systems in which N fertiliser is applied to meet a greater
proportion of crop N demand. Further research evaluating
DMPP under these circumstances would improve
understanding.
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