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Abstract. Coastal wetlands are carbon and nutrient sinks that capture large amounts of atmospheric CO2 and runoff of
nutrients. ‘Blue carbon’ refers to carbon stored within resident vegetation (e.g. mangroves, tidal marshes and
seagrasses) and soil of coastal wetlands. This study aimed to quantify the impact of vegetation type on soil carbon
stocks (organic and inorganic) and nitrogen in the surface soils (0–10 cm) of mangroves and tidal marsh habitats within
nine temperate coastal blue carbon wetlands in South Australia. Results showed differences in surface soil organic
carbon stocks (18.4 Mg OC ha–1 for mangroves; 17.6 Mg OC ha–1 for tidal marshes), inorganic carbon (31.9 Mg IC ha–1

for mangroves; 35.1 Mg IC ha–1 for tidal marshes), and total nitrogen (1.8 Mg TN ha–1 for both) were not consistently
driven by vegetation type. However, mangrove soils at two sites (Clinton and Port Augusta) and tidal marsh soils at one
site (Torrens Island) had larger soil organic carbon (SOC) stocks. These results highlighted site-specific differences in
blue carbon stocks between the vegetation types and spatial variability within sites. Further, differences in spatial
distribution of SOC within sites corresponded with variations in soil bulk density (BD). Results highlighted a link
between SOC and BD in blue carbon soils. Understanding the drivers of carbon and nitrogen storage across different
blue carbon environments and capturing its spatial variability will help improve predictions of the contribution these
ecosystems to climate change mitigation.
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Introduction

Occurring at the interface between land and sea, vegetated
coastal wetlands are dynamic ecosystems that play an
important role in global carbon and nutrient cycles (Duarte
et al. 2013). These ecosystems, including mangrove forests,
tidal marshes and seagrass meadows, absorb significant
amounts of carbon dioxide (CO2) from the atmosphere and
capture nutrients leached or eroded from their adjacent
environments (Chmura et al. 2003; Moseman-Valtierra et al.
2011; Sanders et al. 2014; Atwood et al. 2017). Coastal carbon
(organic), termed ‘blue carbon’, is stored in the above- and
below-ground biomass, sediment and soils with soils
representing the largest (49�99%) long-term organic carbon
(OC) storage pool in these ecosystems (Donato et al. 2011;
Siikamäki et al. 2013). Organic matter deposited by in situ
vegetation or entering a coastal wetland through tidal
inundation/runoff becomes trapped in the vegetations
extensive root systems and buried by additional sediment
depositions (Bouillon et al. 2003; Saintilan et al. 2013;
Sanders et al. 2014; Hayes et al. 2017). This organic matter,
rich in carbon and nitrogen, is subject to slow decomposition

and can accumulate in the ecosystem for long periods of time
(Duarte et al. 2013; Mitra and Zaman 2014; Kelleway et al.
2016b; Howard et al. 2017).

The global stock of blue carbon was estimated to be 11.25
Peta-grams (Pg C) when carbon contained in the above- and
below-ground biomass and soils to a depth of 1 m were
combined (Siikamäki et al. 2013). Mangrove ecosystems
have the largest reported carbon stores; they account for 6.5
Pg C of the global blue carbon stocks, followed by seagrasses
(2.3 Pg C) and then tidal marshes (2 Pg C) (Duarte et al. 2013;
Siikamäki et al. 2013). The distribution of mangroves is
largely concentrated in tropical latitudes, while salt marshes
are prevalent in temperate regions and seagrasses are globally
dispersed (Twilley et al. 1992; Alongi 2002; Siikamäki et al.
2013; Feher et al. 2017). To our knowledge, global estimates
for nitrogen in the blue carbon environments are not available.
However, regional assessments have shown higher soil
nitrogen stocks in disturbed wetlands (Breithaupt et al.
2014; Sanders et al. 2014; Saderne et al. 2020).
Quantification of nitrogen stocks in wetlands is important as
nitrogen availability can increase primary productivity of
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coastal vegetation, and promote algal growth that may
increase soil organic carbon (SOC) storage in blue carbon
environments (Lovelock et al. 2007; Reddy and DeLaune
2008; Sanders et al. 2014). However, high nutrient loads
can also increase mineralisation of organic matter and
reduce carbon stocks in these ecosystems (Sanders et al. 2014).

In some regions, inorganic carbon (IC; i.e. calcium
carbonate, CaCO3) accumulates in coastal soils through the
burial of calcified shells and skeletons of wetland fauna
(e.g. crabs, snails, bivalves, sea stars) (Saderne et al. 2019).
The production of 1 mol of CaCO3 results in the release of 0.63
mol of CO2 to the atmosphere (Macreadie et al. 2017; Saderne
et al. 2019). Thus, in areas where CaCO3 production exceeds
0.63 times CaCO3 burial, the CO2 sink benefit associated with
the accretion of organic carbon in blue carbon environments
can be counteracted (Macreadie et al. 2017; Saderne et al.
2019). The IC content of soil in blue carbon studies is not often
reported but can represent a significant proportion of stored
carbon when present. Therefore, it is important to quantify IC
stocks in blue carbon environments to identify areas where
high IC is present as it may indicate the potential for blue
carbon environments to act as a CO2 source depending on the
relative rates of CaCO3 production and burial.

The accumulation and storage of carbon (SOC and IC) in
blue carbon habitats is inherently linked to the characteristics
of their environmental setting (Bouillon et al. 2008; Lovelock
et al. 2014; Lavery et al. 2019; Ewers Lewis et al. 2020; Owers
et al. 2020). For example, the temperature, precipitation
patterns, geomorphology and hydrodynamics of an
environment influence the structure and colonisation of the
coastal vegetation, and the deposition of organic matter
(Owers et al. 2016b; Ewers Lewis et al. 2020). As such,
variability of SOC stocks in blue carbon environments is
primarily considered to be a function of the in-situ
vegetation given their significant contribution of carbon
inputs to the soil (Saintilan et al. 2013). The type of above-
ground vegetation may therefore provide an indication of
below-ground soil carbon stocks resulting from
autochthonous carbon additions (primary productivity) and
allochthonous carbon capture (sediment accumulation)
(Bouillon et al. 2003; Lamb et al. 2006; Ewers Lewis et al.
2020). This highlights the importance of understanding soil
carbon dynamics under different types of vegetation to gain
better understanding of SOC storage in the blue carbon system.

Previous studies have found SOC contents and stocks to be
highly variable across different geomorphic settings. For
example, Chmura et al. (2003) found that mangrove soils
(0.055 � 0.004 g OC cm–3) had significantly larger soil
carbon densities than tidal marshes (0.039 � 0.003 g OC
cm–3) when compared globally. However, a large proportion
of sites included by Chmura et al. (2003) were tropical
mangrove sites that typically have larger primary
productivity compared to sub-tropical or temperate latitudes
where tidal marshes are found (Sanders et al. 2016; Feher et al.
2017). In contrast, studies in temperate regions have found
average tidal marsh SOC stocks and densities were larger
than in mangrove soils, but also differed within each
ecosystem (Howe et al. 2009; Livesley and Andrusiak 2012;
Ewers Lewis et al. 2018). Comparable studies have not been

undertaken in South Australia with most Australian studies
focused on blue carbon systems along the country’s north to
south-eastern coastlines.

In South Australia, there are 164 km2 of mangrove and
198 km2 of tidal marsh habitats across the Gulf St Vincent and
Spencer Gulf region (Foster et al. 2019). In addition to
mitigating climate change, these habitats provide a suite of
ecosystem services such as providing nursery habitats for
commercially important finfish and feeding grounds for
migratory shore birds, prevention of coastal erosion,
protection of the coast during storm surges and filtering
nutrients from entering coastal waters (Edyvane 1999;
Baker 2015). However, there is a lack of regional-specific
data for SOC stocks for coastal wetlands in SA. Focusing on
adjacent tidal marsh and mangrove environments, this study
aimed to quantify the impact of vegetation type on stocks
of soil carbon (OC and IC) and nitrogen in the surface soils
(0–10 cm) of temperate blue carbon environments in South
Australia. Given the information available from previous blue
carbon studies we hypothesised that: (i) South Australian
mangroves will have larger carbon and nitrogen stocks than
tidal marshes, driven by larger inputs from vegetation and
more efficient trapping of allochthonous organic matter; and
(ii) that tidal marsh environments would demonstrate higher
intra-site variability than mangroves due to irregular patterns
of tidal inundation and limited allochthonous sediment supply.

Materials and methods

Study site and sample collection
Nine sites along South Australia’s coastline spanning the
eastern side of Gulf St Vincent and Spencer Gulf were
sampled (Fig. 1a) during the (Austral) spring of 2016 and
2017 (Department of Environment and Water, permit number
U26525–1). Study sites included Mutton Cove, Torrens Island,
Port Gawler, Port Wakefield, Clinton, Port Broughton, Port
Pirie, Port Paterson and Port Augusta, characterised according
to Bourman et al. (2016) in Table 1. At all sites, vegetation was
dominated by beaded samphire (Sarcocornia quinqueflora)
and scrubby samphire (Tecticornia arbuscular) tidal
marshes and the single mangrove species occurring in
South Australia, the grey mangrove (Avicennia marina). At
each site, three 35 m transects that spanned across the tidal
marsh to mangroves vegetation were sampled. The transects
were anchored (mid-point) at the transition between vegetation
types, evidenced by mangrove seedlings (30 cm) within the
tidal marsh dominant vegetation (Fig. 1b). The first mangrove
core (position 5) was sampled where greater than 80% of the
vegetation was defined as mangrove. All sampling points were
5 m apart, running from tidal marsh (transect positions 1–4) to
the mangrove (positions 5–8), as depicted in Fig. 1b. Surface
soils (0–10 cm) were sampled by intact coring (8 cm internal
diameter) from each transect sampling position. Shallow
sampling depths were chosen with the aim of capturing the
influence of overlying vegetation rather than historical
influences deeper in the profile (Yando et al. 2016;
Kelleway et al. 2017b; Owers et al. 2020). Additionally,
the transect sampling approach was taken to account for the
tidal gradient typically observed in blue carbon environments
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and allowed for visualisation of the occurrences of spatial
tends.

A total of 216 (108 tidal marsh and 108 mangrove forest)
soils were collected across the nine sites. Following collection,
intact cores were stored at <48C for transportation before being
stabilised through freezing and lyophilisation (Cuddon freeze
dryer, Blenheim, New Zealand) before analysis.

Soil processing and analysis
All soil samples were weighed, dried to a constant weight
(freeze-dried), crushed and sieved to �2 mm. A riffle box
(12 � 13 mm slotted box; Civilab Australia, Sydney,
Australia) was used to collect a representative sub-sample
(approx. 25 g) of the �2 mm sample for fine grinding
(Standard Ring Mill, SRM-RC-3P; Rocklabs Ltd, Auckland,
New Zealand, fitted with a stainless-steel head, CARB-40-
BLP). Fine ground samples were further analysed for total
carbon (TC) and total nitrogen (TN) concentration (mg g–1) by
high temperature dry combustion (LECO TruMac CN
analyser, LECO Corporation, St. Joseph, MI, USA). Soil
dry bulk density (BD) was calculated as the dry sample
weight (g) of the soil divided by the original wet sample
volume (cm3). To account for the >2 mm portion of the soils, a
gravel correction was later applied in the stock calculation.

The presence of inorganic carbon (IC) in samples was
determined on fine ground samples using diffuse reflectance
infrared (IR) spectra collected as described in Baldock et al.
(2013) using a Nicolet 6700 FTIR spectrometer (Thermo
Fisher Scientific Inc., Waltham, MA, USA). Inorganic
carbon has a distinct and easily observable absorption at a
frequency of 2560–2480 cm–1 (Vohland et al. 2014). Samples
identified to contain IC were repeatedly acidified (1 M
hydrochloric acid, ~25 mL) until effervescence ceased,
washed (three times) with deionised water, frozen and
lyophilised. Organic carbon (OC) concentration (mg g–1)

was then determined on the acidified samples by dry
combustion as described above. The IC concentration (mg
g–1) was calculated as the difference between TC and OC. For
the soils containing no IC, their OC concentrations were
equated to the measured TC. Soil OC (SOC) and TN
concentrations were used to calculate carbon to nitrogen
ratios (C:N) as an indicator of nitrogen limitation/
enrichment. Surface stocks (Mg ha–1) of SOC, IC and TN
associated with the �2 mm soil fraction were calculated
according to Eqn 1 using SOC as an example with units
associated with each term given in parentheses after the term.

SOCstock
Mg fine fraction OC

ha whole soil

� �

¼ SOC
g fine fraction OC

100g OD fine fraction

� �
� BD

g OD whole soil

cm3 whole soil

� �

� D cm whole soilð Þ � 1� Pg
g OD gravel

g OD whole soil

� �� �
ð1Þ

Statistical analysis
The influence of vegetation (tidal marsh vs mangrove) on the
measured soil properties was determined across the entire
sample population (216 samples), and individually within
the nine sites. A restricted maximum likelihood (REML)
linear mixed model was used to determine differences in
SOC, IC, TN, C:N and BD between tidal marsh and
mangrove environments. Within the model, vegetation type
(i.e. mangrove vs tidal marsh) was set as the fixed effect and
site, vegetation type nested within site and position nested
within transect then vegetation type and site were set as
random terms. Homoscedasticity and normality was
confirmed for all test parameters. Likelihood ratio tests
were applied to the full model with effect of vegetation
type included against the model without the effect in
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Fig. 1. (a) Location of nine South Australian coastal wetland study sites comprising both tidal marsh and mangrove ecosystems and (b) schematic
sampling transects (3 per site, 35 m) were anchored from the midpoint point (first established mangrove) with four sampling points extending into each
vegetation type at 5 m intervals.
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question to obtain P values. Univariate analysis was applied to
the SOC, IC and TN stocks, and BD data with the linear model
as described above. Three sites (Torrens Island, Mutton Cove
and Port Broughton) were excluded from the analysis of IC due
to the absence or low number of soil samples that contained
IC. Additionally, the corresponding bivariate ANOVA with
random effects of site and site by vegetation was performed for
SOC and TN. REML indicated that the variance introduced by
site was greater than the residual variance and could not be
ignored, thus was analysed further. Therefore, the subsequent
results presented are for the response of each soil property to
vegetation type, across and within sites, explored with
bivariate and univariate ANOVA. Statistical analysis and
graphic outputs were performed using GenStat 19 (VSN
International 2017) and R studio for R (RStudio Team
2016; R Core Team 2017) with packages ‘lme4’ (Bates
et al. 2015); ‘ggplot2’ (Wickham 2016) and ‘grid extra’
(Auguie 2016).

Results

The surface soil BD of tidal marshes was significantly larger
than that of mangroves (P = 0.05; Table 2). In contrast, surface
SOC, IC, TN and C:N did not differ significantly with
vegetation type. Average carbon (SOC and IC) and TN
stocks, C:N and soil BD are summarised in Table 2.

At a site level, soil properties (SOC, IC, TN, C:N and BD)
between the tidal marsh and mangrove ecosystems differed
significantly with location (Fig. 2). Tidal marsh surface SOC
and TN stocks, and C:N ratios at Torrens Island (33.7 � 6.3
Mg OC ha–1; 2.7 � 0.4 Mg TN ha–1; and C:N = 12.6 � 0.6 for
tidal marshes and 25.5 � 4.4 Mg OC ha–1; 2.1 � 0.3 Mg TN
ha–1; and C:N = 12.1 � 0.5 for mangroves; Fig. 2a, c) were
larger than the mangrove surface soils (P < 0.001 for SOC and
P < 0.05 for TN and C:N, respectively). At Port Paterson and
Port Augusta, IC stocks were also larger in tidal marsh surface
soils (41.3 � 5.1 Mg IC ha–1 at Port Paterson and 18.6 � 5.0
Mg IC ha–1 at Port Augusta) when compared to the mangroves
(24.3 � 8.6 Mg IC ha–1 at Port Paterson and 11.7 � 6.5 Mg IC
ha–1 at Port Augusta; P < 0.001 for both; Fig. 2b). The surface
soil BD of the tidal marshes at Port Paterson were also larger
than the mangrove soils (0.96 � 0.06 g cm–3 vs 0.81 � 0.10 g
cm–3; P < 0.001). Tidal marsh surface soil BD was also larger
than mangrove soils (0.71 � 0.06 g cm–3 vs 0.58 � 0.21 g
cm–3; P = 0.05; Fig. 2e) at Port Pirie but mangroves had larger
C:N ratios than the tidal marshes (C:N = 9.6 � for mangroves
vs C:N = 8.6 � and for tidal marshes; P < 0.05; Fig. 2d). At
Mutton Cove, the C:N ratio of the tidal marsh surface soils
were larger than that of the mangrove soils (12.4� 0.4 for tidal
marshes vs 11.3 � 0.6 for mangroves; P < 0.001; Fig. 2d).

However, the BD of the mangrove surface soils at Mutton
Cove were higher than the tidal marsh soils (0.46 � 0.07 g
cm–3 vs 0.31 � 0.07 g cm–3; P < 0.0001; Fig. 2e).

The surface soils of mangroves at Clinton had larger SOC
and TN stocks, and C:N ratios than tidal marshes (16.9 � 1.2
Mg OC ha–1; 1.9 � 0.3 Mg TN ha–1; and C:N = 9.0 � 1.5 for
mangroves vs 12.5 � 4.4 Mg OC ha–1; 1.6 � 0.5 Mg TN ha–1;
and C:N = 7.5 � 0.9 for tidal marshes; P < 0.001 for OC and
P < 0.05 for TN and C:N; Fig. 2a, c, d). However, the BD of
the surface soils at Clinton were smaller for the mangrove soils
than the tidal marshes (0.48 � 0.08 g cm–3 vs 0.95 � 0.23 g
cm–3; P < 0.0001; Fig. 2e). Again at Port Augusta, mangroves
had larger SOC stocks and C:N ratios than tidal marshes
(9.8 � 3.2 Mg OC ha–1 and C:N = 11.4 � 3.5 for
mangroves vs 6.5 � 3.3 Mg OC ha–1 and C:N = 9.0 � 1.1
for tidal marshes; P < 0.05; Fig. 2a, d). Within the other sites,
there were no statistically significant differences in carbon
(SOC and IC) and TN stocks, C:N and soil BD.

The spatial distribution of the surface soil carbon (OC and
IC) stocks and BD were variable with sampling position within
vegetation and site (Fig. 3; Table 3). Variability in OC stocks
across the mangroves and tidal marsh samples ranged 7–51%.
Port Gawler, Port Broughton and Port Augusta had the largest
variability (greater than 25%) in OC stocks in both vegetation
types. At Port Wakefield, Clinton and Port Paterson, the tidal
marsh samples had larger variability in OC stocks than the
mangroves. However, the OC stocks of the mangrove samples
at Port Pirie had larger variability than the tidal marshes (21%
vs 14%; Fig. 3a; Table 3). The variability of mangrove IC
stocks was also larger than its variability in tidal marshes at
Port Wakefield, Port Pirie, Port Paterson and Port Augusta
(Table 3). Conversely, at Clinton, variability in the IC stocks of
the tidal marsh samples was larger than the mangroves. At Port
Gawler, there was above 50% variability in the IC stocks in
both the mangrove and tidal marsh samples (Fig. 3b;
Table 3). Variation of soil BD ranged 7–55% with larger
variability across mangrove samples than tidal marshes at
Port Wakefield, Port Broughton, Port Pirie and Port
Paterson. The variability of soil BD in tidal marsh samples
were larger than the mangrove samples at Mutton Cove,
Torrens Island, Port Gawler, Clinton and Port Augusta
(Fig. 3c; Table 3).

Discussion

In contrast to other studies (Chmura et al. 2003; Howe et al.
2009; Livesley and Andrusiak 2012), the average carbon
densities for tidal marsh and mangrove (0.019 g OC cm–3

for both) soils did not differ across the blue carbon sites in this
study. These results do not support our first hypothesis, and

Table 2. Averages and (�) s.d. of surface soil properties for mangroves and tidal marshes

Vegetation Carbon
content
(%)

Bulk
density
(g cm–3)

Carbon
density
(g cm–3)

OC
stock

(Mg OC ha–1)

IC
stock

(Mg IC ha–1)

TN
stock

(Mg TN ha–1)

C:N

Mangroves 4.4 ± 4.0 0.59 ± 0.2 0.019 ± 0.008 18.4 ± 7.3 31.9 ± 17.6 1.8 ± 0.6 9.9 ± 2.4
Tidal marshes 4.3 ± 3.7 0.66 ± 0.7 0.019 ± 0.009 17.6 ± 9.2 35.1 ± 16.8 1.8 ± 0.7 9.4 ± 2.1
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this is potentially a result of the temperate environment and
lower primary productivity rates of mangroves in South
Australia. Surface SOC stocks (17.6 Mg OC ha–1) for South
Australian tidal marshes were lower than stocks (32.1 Mg OC
ha–1) reported for temperate tidal marshes of Victoria
(Livesley and Andrusiak 2012). The mangrove surface SOC
stocks (18.4 Mg OC ha–1) were, however, comparable to
stocks (17.6 Mg OC ha–1) of temperate mangroves in
Victoria (Livesley and Andrusiak 2012). The average SOC
densities (0–10cm) were also lower than those reported across
Australia’s eastern coastline for tidal marshes (0.03–0.04 g OC
cm–3) but within range of the mangroves (0.01–0.04 g OC
cm–3) (Saintilan et al. 2013). Additionally, the average
SOC density for both the tidal marsh and mangroves (0.019
g OC cm–3 for both) were also lower than those reported
globally (0.039 and 0.055 g OC cm–3, respectively) (Chmura

et al. 2003). However, global estimates were derived from
coastal wetlands from the Indian Ocean to the north-eastern
Atlantic Ocean and so do not reflect carbon stocks from
temperate coastal ecosystems. Furthermore, our data is
restricted to the top 10 cm and is unrepresentative of the of
the entire ecosystem SOC stocks as global estimates have
done.

At the local scale, there was no consistent pattern in the
surface carbon (SOC and IC) and TN stocks, C:N or soil BD
across the tidal marsh and mangrove habitats. Three sites that
had larger SOC stocks in the mangroves or tidal marsh soils
also had larger C:N ratios within the same vegetation type.
Larger C:N implies more cellulose and lignin-like material and
is perhaps indicative of less processed carbon (Kelleway et al.
2017a). Torrens Island and Port Augusta occur in densely
populated areas and are likely subject to high anthropogenic
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Table 3. Summary table of CV (%) and s.e. values for spatial distribution of soil properties across tidal marshes and mangrove at nine coastal
wetlands in South Australia

Soil property Summary Mangrove Tidal marsh Mangrove Tidal marsh Mangrove Tidal marsh

Mutton Cove Torrens Island Port Gawler
OC CV, % 18 16 17 19 28 31

s.e. 1.25 1.16 1.27 1.18 1.23 1.09
IC CV, % n.a. n.a. n.a. n.a. 59 56

s.e. n.a. n.a. n.a. n.a. 2.69 3.74
BD CV, % 16 21 28 31 21 31

s.e. 0.02 0.02 0.05 0.05 0.03 0.05
Port Wakefield Clinton Port Broughton

OC CV, % 9 21 7 35 35 25
s.e. 0.49 1.10 0.35 1.28 2.61 1.77

IC CV, % 24 12 16 28 n.a. n.a.
s.e. 3.01 1.31 1.70 2.80 6.65 0.53

BD CV, % 24 15 17 24 55 26
s.e. 0.05 0.03 0.02 0.06 0.05 0.02

Port Pirie Port Paterson Port Augusta
OC CV, % 21 14 16 21 33 51

s.e. 1.25 0.77 0.42 0.52 0.93 0.96
IC CV, % 42 10 35 12 76 27

s.e. 6.05 1.81 2.47 1.48 1.88 1.44
BD CV, % 36 9 13 7 22 24

s.e. 0.06 0.02 0.03 0.02 0.06 0.07
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inputs from the surrounding area. Clinton is less populated but
is in close proximity to the densely populated city of Port
Wakefield. The main supply and deposition of sediment in
Clinton is marine derived allochthonous material that
combined with a sheltered and low energy environment
would promote carbon and nitrogen accumulation
(Table 1). Sanders et al. (2014) showed eutrophic wetlands
had higher OC and TN accumulation rates than undisturbed
sites. Therefore, larger nutrient loads, reflected in the larger
TN stocks of tidal marshes and mangroves at Torrens Island
and Clinton, respectively, would also increase primary
productivity of the vegetation. An increase in primary
productivity of the ecosystem could cause the larger SOC
stocks that were observed at Torrens Island and Clinton
(Sanders et al. 2014).

Previous studies have reported that in low energy tidal
environments, such as our sites, mineral sediments are
deposited closer to the tidal source (mangroves) (Howe
et al. 2009; Livesley and Andrusiak 2012; Breithaupt et al.
2019). This reflects larger SOC contents in sediments deeper in
the wetland (tidal marshes) (Howe et al. 2009). Sediment
deposition in the interior of the wetland would account for
larger SOC in tidal marshes at Torrens Island but is
unsupported at Port Augusta and Clinton. However, unlike
Torrens Island and Clinton, the tidal marshes at Port Augusta
had significantly larger IC stocks than the mangroves. This is
likely driven by the high production and accumulation of
calcifying fauna and flora and/or amplified tidal range (4.1
m) depositing mineral sediments deeper in the wetland at Port

Augusta (Table 1). The larger IC stocks in the tidal marshes at
Port Paterson further supports this hypothesis with amplified
tides (4.1 m) potentially causing the accumulation of sand and
shells deeper in the wetland (tidal marshes). Mineral sediments
(siliciclastic and carbonate) make up most of the material
buried within sediments of blue carbon environments and
are a likely source of the IC stocks at the sites (Saderne
et al. 2019). The production of IC in the blue carbon
environment can result in a release of CO2 to the
atmosphere that counteracts the effects of SOC burial while
dissolution of IC would add to the sink capacity (Macreadie
et al. 2017). The quantification of IC stocks in blue carbon
habitats could therefore be used to highlight regions that may
be a potential source or larger sink than estimated from SOC
stocks alone.

Changes in SOC concentration were directly correlated
with soil BD. The BD of a soil is affected by differences in
soil properties (e.g. texture, water content, depth, organic
matter content) and processes that loosen or compact the
soil (e.g. mixing, traffic, plant growth) (Heuscher et al.
2005; Turner et al. 2006; Ruehlmann and Körschens 2009).
Previous assessments have found 25% of the variation in BD
can be explained by the SOC contents alone, and 33% if the
square root SOC content is used (Heuscher et al. 2005). In this
study, surface soil BD across sites was variable (0.15–1.35 g
cm–3) and had a negative exponential relationship with the
variations in surface soil OC concentrations (mg g–1) (Fig. 4).
Therefore, increase in soil BD over time could reflect
decreases SOC stocks. To investigate the relative

1.60

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00
0 20 40 60 80 100 120 140 160 180 200

Organic carbon (mg/g)

B
ul

k 
de

ns
ity

 (
g 

cm
−

3 ) y = 0.9119e−0.011x

R2 = 0.7977

Fig. 4. The relationship between bulk density (g cm–3) and organic carbon concentration (mg g–1) in mangrove
and tidal marsh surface (0–10 cm) soils from temperate vegetated coastal wetlands in Southern Australia.
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importance of SOC content (mg g–1), soil BD (g cm–3), and the
proportion of gravel (g) to defining the SOC stocks, we
performed a correlation analysis. For this dataset, the most
important variable in accounting for variation in SOC stock
(Mg OC ha–1) was SOC content (mg g–1) (R2 = 0.56).
However, the correlation analysis also showed that soil BD
(g cm–3) (R2 = 0.44) and gravel content (g) (R2 = 0.16) could
also independently account for a portion of the variation in
SOC stock. For tidal marshes and within some sites (Port
Paterson, Port Pirie and Mutton Cove), the larger soil BD did
not correspond with lower SOC stocks. This could be driven
by differences in the packing density of the organic matter
fraction and mineral fraction of the soils. For example,
variations in the volumetric fraction of minerals in coastal
soils have been shown to account for variations in soil BD
(Breithaupt et al. 2017). Tidal marshes also hold a higher
position in the tidal frame that could drive faster decay rates of
the organic matter, due to greater oxygen exposure, that would
lower soil BD. In addition, greater terrestrial sediment
deposition through runoff would occur on the landward side
of a wetland resulting in the accumulation of mineral rather
than organic sediments.

The variability of the soil properties (OC, IC and BD) did
not follow a consistent pattern with vegetation type and
appeared to be driven by site specific differences.
Additionally, spatial patterns of TN and C:N ratio were
similar to that of SOC. The second hypothesis was
therefore unsupported by these results as the spatial
distribution of stocks was variable within both vegetation
types. Significant variability in the distribution of blue
carbon soil stocks have been consistently observed across
different geomorphic settings, vegetation structure, soil type
and soil depth (Chmura et al. 2003; Donato et al. 2011;
Kauffman et al. 2011; Livesley and Andrusiak 2012;
Saintilan et al. 2013; Adame et al. 2015; Kelleway et al.
2016a; Owers et al. 2016a; Hayes et al. 2017; Ewers Lewis
et al. 2018; Owers et al. 2020). The only difference between
our vegetation types within each of our study sites was at the
broad scale; i.e. mangrove vs tidal marsh and soils were only
sampled to the top 10 cm. Therefore, it is probable that
geomorphic setting and soil type are the main drivers of the
spatial variability in SOC and IC stocks found within our sites.
These results indicate future sampling strategies of blue carbon
habitats need to consider the variability of carbon stocks in an
ecosystem for accurate stock estimates.

Most of the variation in SOC contents between mangroves
and tidal marshes are likely due to differences in sediment
supply and the tidal inundation patterns of a region (Chmura
et al. 2003; Howe et al. 2009; Saintilan et al. 2013). Short-term
SOC accumulation rates in South Australia have been
estimated to range 4.3–94.1 g OC m–2 year–1 in tidal marsh
systems and 9.3–97.1 g OC m–2 year–1 in mangroves (Lavery
et al. 2019). The mean accumulation rates for tidal marshes
and mangroves is estimated at 31.1 g OC m–2 year–1 and 38.8 g
OC m–2 year–1, respectively (Lavery et al. 2019). These results
suggest South Australian mangroves should have higher SOC
stocks than tidal marshes. However, these values are only
representative of a few locations and may not account for the
variability in SOC stocks as highlighted across our study sites.

Conclusion

Despite their potential to mitigate climate change, coastal
wetlands are being degraded and lost as a direct result of
anthropogenic activity (EPA 2021). Blue carbon habitats have
been suggested as long-term sinks for carbon and nutrients due
to their high sediment accumulation rates and slow
decomposition of organic matter. Yet, the drivers of carbon
accretion and patterns of carbon storage in the blue carbon
environment remain uncertain. This study showed that surface
soils in tidal marsh and mangrove ecosystems have
comparable surface SOC stocks, indicating that vegetation
type has little impact on surface SOC stocks for regional
assessments (i.e. state-wide) in South Australia. Within
smaller spatial scales, however, there can be variability in
surface SOC stocks within, and among, sites. Capturing the
spatial variability of SOC stocks in the blue carbon
environment will be important in improving future
estimates of the contribution these habitats have in
mitigating climate change.
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