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Estimating the attainable soil organic carbon deficit in the soil
fine fraction to inform feasible storage targets and de-risk
carbon farming decisions
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ABSTRACT
For full list of author affiliations and
declarations see end of paper Context. Defining soil organic carbon (SOC) ‘potential’ storage, underpins the economic feasibility

of carbon sequestration; however, ‘potential’ storage is not quantifiable using historical and current
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empirical data. We propose a framework to define ‘attainable’ SOC storage that varies with soil
properties, environmental conditions and management practices. Aims. Within the soil fine
fraction, we quantified additional storage capacity of the fine fraction SOC attainable deficit
(FFSOC_Attainable_Def) by the difference between attainable (FFSOC_Attainable) and actual fine
fraction SOC. Methods. Using three analyses, we developed a framework to: (1) estimate the

Handling Editor:
Etelvino Novotny FFSOC_Attainable_Def of the fine fraction of Australian agricultural soils within broad mean annual

precipitation ranges and soil depth classes; (2) establish rapid prediction capability for the
FFSOC_Attainable_Def using infrared/partial least square regression modelling; and (3) generate spatial
FFSOC_Attainable_Def estimates for agricultural regions with ensemble Random Forest modelling.
Key results. Global analyses of FFSOC_Attainable_Def do not consider key environmental drivers of
carbon inflows and outflows nor soil depth. Separate analyses of soils derived from different combina-
tions of precipitation and soil depth need to include variations in environmental conditions and soil
properties to accurately define FFSOC_Attainable and FFSOC_Attainable_Def within the fine fraction. Spatially
estimated FFSOC_Attainable_Def stocks revealed an opportunity to increase current fine fraction SOC
stock by 3.47 GT (0–0.10 m depth) and 3.24 GT (0.10–0.30 m depth). Conclusions. Our findings
suggests that FFSOC_Attainable_Def is dynamic, not static. Caution is needed when interpreting
the results from this analysis. Implications. Deriving estimates of FFSOC_Attainable_Def will reduce
risks in decision making on carbon farming in national policies.
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Introduction

The conversion of natural ecosystems into agricultural production systems, in general, has 
resulted in reduced soil organic carbon (SOC) stocks (Minasny et al. 2017; Sanderman et al. 
2017). For example, Sanderman et al. (2017) reported the adoption of agriculture had 
caused a global carbon debt of 133 Pg C within the top 2 m of soil. Further, they noted that 
in the past 200 years of human civilisation, SOC was being lost at an alarming rate. Similar 
to global trends, over the past 40 years, approximately half the topsoil SOC has been lost 
under Australian agricultural production systems (Luo et al. 2010). Changing land manage-
ment practices in an attempt to restore some of the lost SOC is therefore important for 
enhancing soil health and production (Lal 2016; Lehmann et al. 2020), natural capital 
(Robinson et al. 2017), and carbon sequestration (Lal 2004). 

Increasing current SOC stocks, or reducing the loss of SOC stocks, can contribute to 
mitigating rising global greenhouse gas concentrations and its associated adverse effects 
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(Lal 2004; Minasny et al. 2017). The ‘4 per mille Soils for Food 
Security and Climate’ initiative was launched at COP21 to 
increase global SOC stocks by 4 per mille (or 0.4 %) per 
annum (Minasny et al. 2017). A key aim of this initiative was 
to tackle greenhouse gas emissions caused by anthropogenic 
activities through the sequestration of carbon in soils. There 
are counter-arguments and evidence that question whether 
the target of the ‘4 per mille’ initiative is realistic (White 
et al. 2018; Berthelin et al. 2022). Nevertheless, there is 
potential for enhancing SOC stocks in agricultural soils by 
increasing the flow of carbon into the soil by reducing 
constraints on agricultural production and minimising carbon 
flows out of the soil with the adoption of next-generation 
land management practices. For example, the Australian 
Government’s domestic climate change policies have incen-
tivised the adoption of improved land management activities 
that promote the sequestration of SOC in agricultural soils 
under Emissions Reduction Fund (ERF) activities (Paustian 
et al. 2019). As a result, where a soil carbon sequestration 
project has demonstrated a positive change in SOC stock in 
response to new land management activities, Australian 
Carbon Credit Units (ACCUs) can be issued. Such policy 
directions encourage the adoption of agricultural practices 
that increase SOC stocks and can potentially diversify the 
income sources and reduce the farming risk profile for 
landholders. 

An important question faced by landholders considering 
entry into a carbon sequestration project is: ‘what is the 
quantity of SOC that can be added to soils and retained for the 
long-term through improved land management practices for a 
given land parcel/location?’ The answer to this question is 
not straightforward. The SOC component of soils consists of a 
heterogeneous mixture of organic carbon, existing at different 
stages of decomposition and extents of interaction with the 
mineral phase, both of which can influence SOC turnover 
time. Various analytical methods have been used to simplify 
the complexity of SOC composition by allocating it to different 
fractions that are considered to represent components with 
varying cycling rates based on particle size, density, and/or 
chemical composition (e.g. Poeplau et al. 2018). These 
fractionation approaches have also been used as the basis 
for initialising and calibrating process-based multi-pool models 
of SOC cycling, such as, DayCent (Dangal et al. 2022) and  
RothC (Skjemstad et al. 2004). Further, SOC stocks vary 
significantly across spatial and temporal scales, adding additional 
complexities (Viscarra Rossel et al. 2014; Karunaratne et al. 
2015; Gray et al. 2015, 2019). An understanding of the 
balance between the organic carbon entering a soil from an 
agricultural production system and its loss through erosion 
or release as CO2 into the atmosphere through decomposition, 
and the cycling of carbon; i.e. transformation of labile carbon 
to more stable forms, within the soil matrix is required to 
identify location-specific land management strategies with a 
potential to increase SOC stocks. 

Soil carbon sequestration projects tend to focus on 
increasing total SOC, but the SOC composition requires 
consideration due to differences in the relative rates of 
decomposition associated with different SOC fractions 
(Baldock et al. 2013a). Allocation of total SOC to component 
fractions can be used to characterise stabilisation mechanisms 
and microbial processes controlled through environmental 
drivers of carbon cycling (Baldock and Skjemstad 2000). The 
long-term stabilisation of SOC is governed by a combination 
of chemical composition and physical protection, resulting in 
distinct turnover rates (Cotrufo et al. 2019; Six et al. 2000, 
2002). Conceptually, SOC fractions can be categorised based 
on biological stability (labile, stable, or inert), associated with 
varying turnover times (short, medium, or long). The labile 
and stable fractions of SOC assume turnover with time, 
following first-order kinetics, which characterises their own 
turnover rates. 

Theoretically, SOC stocks can increase without limit 
provided the inputs of carbon continue to increase and losses 
from the soil are minimised. However, the concept of SOC 
stock stabilisation is an essential aspect of long-term carbon 
storage in soils. There are various mechanisms proposed to 
account for the stabilisation of carbon entering into the 
soil, including: (1) adsorption of SOC onto mineral surfaces 
(Baldock and Skjemstad 2000); (2) encapsulation of carbon 
within soil aggregates (Six et al. 2000); (3) adverse micro-
environmental conditions that create unfavourable conditions 
for the soil biota, minimising decomposition; and (4) chemical 
composition of the SOC. 

This paper focuses on quantifying and determining the 
extent of carbon stabilisation within the fine fraction of soil 
(FFSoil) that will be defined as particles ≤50 μm. Mineral 
surfaces provide a mechanism for stabilising organic carbon 
through adsorption reactions, with the capacity of the FFSoil 
to stabilise SOC considered finite (Baldock and Skjemstad 
2000; Six et al. 2002; Stewart et al. 2007). Ingram and 
Fernandes (2001) proposed that three distinct stock levels: 
(1) actual; (2) attainable; and (3) potential, could be defined 
for the more stable component of SOC with a half-life 
>10 years. This approach can equally be adapted to the 
explain SOC storage in the FFSoil. The ‘actual’ SOC stock 
within the FFSoil represents that existing under current manage-
ment practices and will be denoted by FFSOC_Actual. The  
attainable stock of SOC within the FFSoil, denoted  by  
FFSOC_Attainable, represents the stock of FFSOC that would be 
achieved for a soil if the input of organic carbon is constrained 
to that associated with maximum plant productivity that can be 
achieved on that soil. The ‘attainable’ SOC stock may increase 
in response to improvements in plant genetics and agricultural 
management practices that result in greater plant dry matter 
production and enhanced flows of organic carbon to the soil. 
Where the FFSOC_Actual stock is lower than the FFSOC_Attainable 
stock, an opportunity for sequestering additional atmospheric 
carbon within the FFSoil exists (Baldock et al. 2019). 
The ‘potential’ SOC stock within the FFSoil, denoted  by  
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FFSOC_Potential, represents the maximum plausible stock of 
carbon that can be stored within the FFSoil when carbon inputs 
remain unconstrained. The FFSOC_Potential stock represents an 
upper limit of carbon sequestration and corresponds to the 
saturated condition described by Six et al. (2002)  and 
Stewart et al. (2007). Once  the  FFSOC_Potential is reached, no 
further stabilisation of carbon by the FFSoil can occur and 
any additional carbon entering the soil remains within the 
more labile fraction. The gap between FFSOC_Potential and 
FFSOC_Actual has been termed the saturation deficit and interest 
exists as to how this soil property can be used to assess soil 
carbon sequestration potential (Stewart et al. 2007, 2008; 
Beare et al. 2014; McNally et al. 2017). 

To derive estimates of the FFSOC associated with saturation 
(i.e. the FFSOC_Potential), research studies have often collected 
soils exhibiting a range of both FFSoil and FFSOC_Actual and 
used some form of regression to define an upper limit of 
FFSOC_Actual. For example, Beare et al. (2014) used a 90th 
quantile regression approach to define saturation and thus 
the value of FFSOC_Potential. However, does this approach define 
a value for FFSOC_Potential or is it defining an upper limit to the 
value of FFSOC_Actual, equivalent to FFSOC_Attainable? We  
hypothesise that such studies can only be used to define the 
value of FFSOC_Attainable given the soil properties, environ-
mental conditions, and management practices associated 
with the soils included in the analysis. The value of 
FFSOC_Attainable may or may not be representative of 
FFSOC_Potential and it is likely to underestimate FFSOC_Potential. 
The difference between FFSOC_attainable and FFSOC_Actual should 
be defined as the attainable SOC deficit of the soil fine frac-
tion (FFSOC_Attainable_Def) instead of simply as a SOC deficit. 
A theoretical framework explaining the concept of 
FFSOC_Attainable_Def is in Fig. 1. 
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Fig. 1. The theoretical relationship between the gravimetric contents
of the fine fraction mass (FFSoil, x-axis) and the current/actual fine
fraction soil organic carbon (FFSOC_actual, y-axis). The purple line indicates
the least squares regression line depicting the general relationship
between soil mass and carbon loadings; the yellow dash line indicates
the attainable soil organic carbon (FFSOC_Attainable) content. Attainable
deficit indicates FFSOC_Attainable_Def.

Traditionally, laboratory-intensive approaches that involve 
particle size fractionation followed by an analysis of samples 
to quantify elemental SOC concentration of the component 
fractions, and other soil properties such as surface area, pH 
and Al have been used to quantify the FFSOC_Attainable (Beare 
et al. 2014; McNally et al. 2017). However, scaling up such 
laboratory-based approaches is a costly and time-consuming 
operation. Pioneering work led by Baldock et al. (2019) 
demonstrated that the use of mid infrared spectroscopy 
enables us to quantity of the FFSOC_Attainable directly or through 
the generation of the input datasets defined to estimate 
FFSOC_Attainable by Beare et al. (2014)  and McNally et al. (2017). 

Here, we developed a novel framework for rapid and cost-
effective estimation of the FFSOC_Attainable_Def. Our approach 
combines three analytical pipelines including the following: 
(1) estimation of the FFSOC_Attainable_Def of the fine fraction 
of Australian agricultural soils within broad mean annual 
precipitation ranges and soil depth classes; (2) establishing 
a rapid prediction capability for the FFSOC_Attainable_Def based 
on an infrared/partial least square regression (IR/PLSR) 
modelling approach; and (3) generation of spatial estimates 
of FFSOC_Attainable_Def across the major agricultural production 
regions in Australia using an ensemble Random Forest 
modelling approach. 

Materials and methods

The framework for estimation, rapid and cost-effective 
quantification and spatial modelling of the FFSOC_Attainable 
and FFSOC_Attainable_Def across the major agricultural produc-
tion regions in Australia is in Fig. 2. 

Dataset

The data used in this study were derived primarily from a 
national dataset collected under the Soil Carbon Research 
Program (SCaRP), representing 4180 farmer paddock sites 
across Australia’s cropping and pasture regions (Baldock et al. 
2013b). The SCaRP dataset (https://doi.org/10.25919/ 
5ddfd6888d4e5) included SOC fractionation data for 312 
soils and was augmented with fractionation data derived 
for an additional 163 SCaRP soils, fractionated after the 
completion of the original SCaRP project (n = 475). The 
dataset included gravimetric concentrations of total organic 
carbon and the following three component fractions: (1) 
particulate organic carbon (POC) representing the SOC 
associated with >50 μm particles after removal of resistant 
organic carbon (ROC); (2) humus organic carbon (HOC) 
representing the SOC associated with ≤50 μm particles after 
removal of resistant organic carbon (ROC); and (3) ROC 
representing the SOC associated with >50 μm and ≤50 μm 
particles having a polyaromatic chemical structure. The POC 
fraction has a turnover time of 1–2 years, while the HOC 
fraction is expected to remain in soils for up to 100 years. 

3

https://doi.org/10.25919/5ddfd6888d4e5
https://doi.org/10.25919/5ddfd6888d4e5
www.publish.csiro.au/sr


Calculate the 
concentration of FFsoc 

for 0–0.10 m and 
0.10–0.30 m soil 

contained in the SCaRP 
dataset 

Spatial estimates of 
FFSOC_Attainable_Def stocks 

in FFSoil 
(0–0.10 m and 
0.10–0.30 m) 

Quantile regression analysis: 
FFSOC concentration vs mass of FFSoil 

based on the HRZ or LRZ 

Developed IR/PLSR models for FFSOC_Attainable_Def 
based on the border precipitation regions and 

defined sampling depth intervals 

Use developed IR/PLSR models to predict 
FFSOC_Attainable_Def across the SCaRP database soil 

samples 

Spatial machine learning 
models for FFSOC_Attainable_Def Calculation of the FFSOC_Attainable_Defstocks in FFSoil stocks

(0–0.10 m and (0–0.10 m and 0.10–0.30 m)
0.10–0.30 m) 

Calculation of the 
FFSOC_Attainable_Def 

concentrations 

S. Karunaratne et al. Soil Research 62 (2024) SR23096

Fig. 2. The framework for quantification and modelling of the soil organic carbon attainable deficit (FFSOC_Attainable_Def) in
agriculture production regions.

The ROC fraction assumes a stable form of carbon, which has a 
turnover time of centuries to millennia. 

The SOC contained within the HOC fraction was used to 
provide measured values for the current carbon concentra-
tion of FFSOC_Actual in each fractionated soil in units of mg 
FFSOC g−1 ≤2 mm soil. In addition to the data available within 
the published SCaRP dataset, the mass of soil fractionated and 
the mass of the fine fraction for each fractioned soil was 
obtained from archived SCaRP data files and were used to 
calculate the gravimetric concentration of the FFSoil in units 
of g FFSoil g−1 ≤2 mm soil. A detailed description of the 
distribution of the sampling sites, sampling design, and the 
procedure used to derive the total SOC, POC, HOC and ROC 
concentrations is described by Baldock et al. (2013a). 

Quantile regression analysis and calculation of
the attainable soil organic carbon deficit in the
fine fraction of the soils

Initially, the FFSOC_Attainable analysis was performed as a global 
90th quantile regression analysis in which soils (n = 475) 
collected from sites with annual precipitation values ranging 
from 277 mm to 1809 mm and collected from different depths 
(0–0.05 m; only for a few sites in New South Wales, sites; 
0–0.10 m; 0.10–0.20 m; and 0.20–0.30 m) were pooled and 

a single model was derived. This represents the typical 
approach taken when calculating SOC deficit. However, 
after exploring the initial results, it was evident that an 
approach that acknowledged variations in mean annual 
precipitation and soil depth would be more appropriate. 

The significance of separating data based on precipitation 
and depth prior to fitting 90th quantile regressions (Eqn 1), 
was tested by converting both precipitation and depth into 
dummy variables. The dummy variables were created based 
on soil depth (0–0.10 m or 0.10–0.30 m) and mean annual 
precipitation (≤600 mm or >600 mm) from 1991 to 2010 
at the site from which the soils were collected. The 90th 
quantile regression model was fitted including a higher order 
interaction term (precipitation class × depth class), which was 
significant (P < 0.0001), indicating an inhomogeneity of 
slopes and/or of the intercepts. The inference is carried out 
using the ‘bootstrapped’ approach and the quantile regression 
modelling is performed using R package quantreg (Koenker 
et al. 2023). The 90th quantile regression analysis (Eqn 1) 
of the gravimetric content of FFSOC_Actual (mg FFSOC g−1 

≤ 2 mm soil) as a function of the gravimetric content of 
FFSoil (g FFSoil g−1 ≤ 2 mm soil) was applied to all soils for 
each depth and precipitation combination (Table 1), and 
the slope (β) and intercept terms were defined. The 90th 
quantile predicted values for FFSOC_Actual were used to define 
the FFSOC_Attainable for each soil, and the FFSOC_Attainable_Def of 
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Table 1. Summary of the quantile regression model based on the
sampling depth and broad classification of the mean annual cumulative
precipitation.

Model names Number of
samples (n)

Remarks

Depth 0–0.10 m and
precipitation
≤600 mm

124 Depth of samples between 0 and
0.10 m and low rainfall zone (LRZ)
where annual cumulative rainfall is
less than 600 mm

Depth 0–0.10 m and
precipitation
>600 mm

172 Depth of samples between 0 and
0.10 m and high rainfall zone (HRZ)
where annual cumulative rainfall is
greater than 600 mm

Depth 0.10–0.30 m
and precipitation
≤600 mm

72 Depth of samples between 0.10
and 0.30 m and low rainfall zone
(LRZ) where annual cumulative
rainfall is less than 600 mm

Depth 0.10–0.30 m
and precipitation
>600 mm

107 Depth of samples between 0.10
and 0.30 m and high rainfall zone
(HRZ) where annual cumulative
rainfall is greater than 600 mm

each soil was calculated as the difference between the 
FFSOC_Attainable and the measured FFSOC_Actual (Eqn 2). 

Z
FFSOC actual = β × FFsoil mass + intercept (1) 

where β and intercept refer to quantile regression analysis 
parameters associated. 

FFSOC Attainable Def = FFSOC Attainable − FFSOC Actual (2) 

Chemometric model development for the
attainable soil organic carbon deficit

During SCaRP, infrared (IR) spectra were acquired and 
archived for all 475 soils and the additional 20 020 soils that 
SCaRP analysed (see Baldock et al. (2013c) for details about 
the acquisition of the IR spectra). The IR spectral datasets 
covered both the MIR and part of the NIR spectrum sections 
of the electromagnetic region. The derived FFSOC_Attainable_Def 
values and the concomitant IR spectra acquired for the 475 
soils were used to assess the ability to generate predictive 
IR/PLSR algorithms to predict the FFSOC_Attainable_Def values 
of each soil. 

The raw spectra acquired by SCaRP were pre-processed 
as follows: (1) reflection was converted into absorbance 
(absorbance = log(1/reflectance); (2) the spectra were 
truncated and resampled between 6000 and 600 cm−1 with 
a resolution of 4 cm−1; and (3) a baseline offset transformation 
was applied (i.e. baseline corrected). In the baseline offset 
transformation, the lowest absorbance value of the spectrum 
was subtracted from all other spectral values. Baldock et al. 
(2013c) built successful PLSR prediction models with MIR 

spectra to which only baseline correction was applied and 
noted that including additional pre-processing methods did 
not improve the resultant PLSR models. Soil samples were 
finely grounded prior to scanning using Fourier transform 
MIR spectroscopy, and minimum pre-processing of the 
spectra is performed in the current study. 

Due to the limited number of calibration soils, instead of 
splitting the dataset into calibration and validation datasets, 
the chemometric models were developed as bootstrapped 
IR/PLSR models. The optimum number of factors was 
determined using the ‘onesigma’ approach as explained in 
the ‘pls’ R package through a leave-one-out-cross validation 
approach (Liland et al. 2022). A total of 100 bootstrapped 
models were developed and were validated using ‘in-the-bag’ 
and ‘out-of-bag’ datasets. The out-of-bag validation approach 
can be considered as an independent validation since the soils 
included were not included in the model calibration process. 
The models were evaluated by the root mean square error 
(RMSE), as a measure of the model accuracy, and Lin’s 
concordance correlation coefficient (LCCC) (Lawrence 1989), 
as a measure of how good the fit between measured and 
predicted values was. Model prediction quality was considered 
superior when RMSE and LCCC of the developed models were 
close to zero and one, respectively. 

The developed IR/PLSR models were applied to the 
remaining 20 020 SCaRP MIR spectra to predict their 
FFSOC_Attainable_Def values. The IR/PLSR prediction uncertainty 
was assessed by calculating the lower (i.e. 0.05) and upper 
(i.e. 0.95) percentiles derived from the 100 bootstrapped 
model outputs for each sample. 

Spatial modelling of soil carbon saturation deficit

Spatialisation of the point FFSOC_Attainable_Def concentrations 
was performed using the IR/PLSR predicted values for all 
SCaRP soils. Before spatial modelling, the FFSOC_Attainable_Def 
concentrations were converted into FFSOC_Attainable_Def stocks 
with Eqn 3. 

= 

× Bulk density × Depth 

× ð1 − gravel fractionÞ × ð1 − PrtÞ (3) 

FFSOC Attainable Def stock FFSOC Attainable Def concentration 

where FFSOC_Attainable_Def stock is expressed in Mg C ha−1, 
FFSOC_Attainable_Def is expressed as mg C g−1 soil, bulk density 
is expressed as g soil cm−3, depth/thickness is expressed in cm, 
gravel correction factor (1 - gravel fraction), Prt correction for 
the proportion of the land area within the sampling unit 
allocated to rocks and/or trees. Measured values for bulk 
density, gravel correction factor and Prt were provided for 
each soil as part of the SCaRP dataset. 

Spatialisation was then performed by an ensemble 
approach using a Random Forest (RF) model (Breiman 2001). 
Two global spatial models (i.e. 0–0.10 m and 0.10–0.30 m) 
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were fitted with estimates generated from four different IR/ 
PLSR model estimates associated with depth and mean 
annual precipitation. 

Environmental covariates
A set of environmental covariates that may act as important 

drivers of FFSOC_Attainable_Def stock were identified for inclusion 
in the subsequent spatial machine learning prediction function. 
For a list of environmental covariates and their broad classifi-
cation into the scorpan factors as described by McBratney et al. 
(2003), see Supplementary Table S1. Before spatial modelling, 
all the environmental covariates (Table S1) were re-sampled to 
a spatial resolution of 90 m. 

Development of predictive machine learning
spatial models for soil carbon attainable deficit

A total of 4011 (for 0–0.10 m depth) and 4012 (0.10– 
0.30 m depth) locations with IR/PLSR estimated FFSOC_Attainable_Def 
stock values were used for the current analysis. In the spatial 
model development, due to the limited dataset covering the 
large parcel of landmass across the Australian continent, the 
full dataset was bootstrapped to create 100 bootstrapped 
models by sampling with a replacement rather than simply 
splitting the dataset into a single disjoint pair of model 
calibration and validation sets. Similar to IR/PLSR model 
fitting, model validation was performed using in-the-bag 
and out-of-bag validation datasets, where the latter was 
used as an independent validation dataset. The model 

quality was evaluated using RMSE and LCCC. The RF model 
was implemented using the computationally efficient ‘ranger’ 
R package (Wright and Ziegler 2017). In summary, the 
environmental covariates that were included in the RF 
model were used to explain the deterministic component of 
the relationship between the FFSOC_Attainable_Def stock and 
other features of the physical environment. 

The spatial prediction was performed at three arc-second 
(~90 m) resolutions using the environmental covariates 
listed in Table S1 using 100 bootstrapped models. The 
resulting spatial predictions were used to construct a pixel-
wise predictive distribution and percentiles (0.05 and 0.95) 
using the pixel-wise ensemble estimates. In addition, mean 
and median predictions of the FFSOC_Attainable_Def were also 
calculated. The modelling and prediction pipeline used for 
this workflow used custom R scripts developed previously, 
and the analysis was performed using the ‘Petrichor’ CSIRO 
High-Performance Computing facility. 

Results

Quantifying fine fraction soil organic carbon
storage parameters

The global analysis performed to derive the FFSOC_Attainable is in 
Fig. 3. It was revealed that not considering key environmental 
drivers of carbon inflows and outflows into soils; e.g. mean 

Fig. 3. Relationship between soil organic carbon concentrations in the fine fraction of soils (FFSoil) with the fine fraction mass. The colour
gradient in dots represents the variation in the mean annual precipitation associated with each sampling site and the symbols represent the
different soil depths from which soils were collected. The blue colour line indicates 90th quantile regression line.
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annual precipitation and other factors such as the sampling 
depth, generated unrealistic estimates of FFSOC_Attainable_Def. 
As seen in Fig. 3, the 90th quantile regression line (Blue 
colour) that defined the FFSOC_ Attainable was governed by 
the FFSOC_Actual of the soils collected from the 0–0.10 m soil 
layer and from sites with higher mean annual precipitation. 
As a result, the estimated FFSOC_Attainable_Def was overesti-
mated for regions with low mean annual precipitation and 
lower depth intervals even with the same FFSoil mass. The 
overestimation of the FFSOC_Attainable_Def is due to fitting a 
global 90th quantile regression where the upper limit of the 
FFSOC_Attainable_Def is defined using higher values of the 
FFSOC_Actual reported in topsoils and higher precipitation 
regions. The likelihood of achieving the global estimated 
FFSOC_Attainable might not be physically possible under current 
environmental constraints that affect the carbon inflows and 
outflows. 

Given the limitations associated with the global analysis 
(Fig. 3), and the significant (P < 0.0001) higher order interac-
tion terms, showing an inhomogeneity of slopes and/or of the 
intercepts, were obtained when the precipitation class and 
depth class were included in the 90th quantile regression 
analysis, performing 90th quantile regression separately 
for each combination precipitation and depth was justified 
(Table 1). As a result, FFSOC_Attainable and subsequent 
calculations of the FFSOC_Attainable_Def were performed sepa-
rately for soils derived from different depths and from 
sites with different mean annual precipitations. The results 
of the quantile regression analyses completed for each 
combination of soil depth (0–0.10 m and 0.10–0.30 m) and 
mean annual precipitation (≤600 mm and >600 mm) are in 
Fig. 4. The FFSOC_Attainable, as defined by the 90th quantile 
regression line, in the 0–0.10 m soil layer was approximately 
twice that associated with the 0.10–0.30 m soil layer. The 
FFSOC_Attainable associated with soils collected from sites with 
>600 mm mean annual precipitation was approximately 
twice that associated with soils collected from sites with 
≤600 mm mean annual precipitation. 

The distribution of FFSOC_Attainable_Def concentrations and 
some summary statistics are in Fig. 5 and Table 2. The 
density plot for the calculated FFSOC_Attainable_Def associated 
with each combination of depth and mean annual precip-
itation is depicted in Fig. 5. Based on the median 
FFSOC_Attainable_Def values, soils from the HRZ had higher 
concentrations of FFSOC_Attainable_Def than soils from the LRZ 
for both depth intervals (Table 2). Further, a higher standard 
deviation of FFSOC_Attainable_Def was found for soils from the 
0–0.10 m depth than the 0.10–0.30 m depth within the 
HRZ. In contrast to the HRZ, the magnitude of the difference 
between FFSOC_Attainable_Def median values between the two 
soil depth layers was higher for the LRZ. In fact, the 
0–0.10 m depth layer had FFSOC_Attainable_Def values three times 
larger than the 0.10–0.30 m depth layer. The quantile 
regression models estimated parameters are summarised in 
the Supplementary Table S2. 

Chemometric modelling of attainable soil
organic carbon deficit concentrations in the fine
fraction of soil

The four separate IR/PLSR calibration models (in-the-bag) for 
0–0.10 m and 0.10–0.30 m in the LRZ and HRZ for both soil 
depth layers, respectively, had mean LCCC values ≥0.85 
(Table 3). The out-of-bag validation of the fitted models, 
except for IR/PLSR model fitted for depth interval 0.10– 
0.30 m and LRZ, reported an LCCC value greater than 0.75. 
Model performance appeared to correspond with the number 
of samples included suggesting that increasing the number of 
soils in each class through the fractionation of additional soils 
covering wider spatial variation could increase model 
performance. In-the-bag and out-of-bag mean RMSE values 
varied over the combinations of soil depth and mean annual 
precipitation (Table 3). This was due to variations in the 
concentrations of the FFSOC_Actual across those groupings. 
Nonetheless, these results suggested that the IR/PLSR 
algorithms derived could be used to confidently predict 
FFSOC_Attainable_Def. 

The mean β coefficients associated with 100 bootstrapped 
for each of the four IR/PLSR calibration models show which 
spectral components contributed to the prediction of the 
FFSOC_Attainable_Def (Fig. 6). Examination of these β coefficients 
showed distinct positive contributions from spectral features 
at 3640–3604 cm−1, 2296–1872 cm−1, 1284 cm−1, 1180 cm−1, 
980 cm−1 and 812 cm−1, corresponding with mineral-associated 
peaks of gibbsite, quartz, clay and O-Si-O. Conversely, strong 
negative effects were noted from spectral features at 
3700 cm−1, 3208–2806 cm−1, 1624–1552 cm−1 associated with 
OH−, organic matter, and amide C=O bonds. The negative 
contribution from organic matter to the predictions was also 
observed in the β coefficients of FFSOC_Attainable_Def models 
in Baldock et al. (2019) and as they discuss, is consistent 
with FFSOC_Attainable_Def declining as organic carbon content 
increased. 

Spatial modelling of attainable soil organic
carbon deficit stocks in the fine fraction of soil

The in-the-bag and out-of-bag spatial machine learning model 
validation statistics are in Table 4. Both fitted models reported 
similar model quality assessment statistics with a model 
accuracy of ~5 Mg C ha−1 as defined by RMSE out-of-bag 
values. The top 10 environmental covariates for both depth 
intervals were identified and were predominately associated 
with climate (Fig. 7). This demonstrated the importance of 
climatic variables that affect biomass production and carbon 
flow into the soils. The SOC stabilisation was spatially 
represented by digitally mapped clay mineral types and the 
summation of the clay and silt fractions across the study area. 
The SOC stabilisation properties were ranked 12th and 14th 
in the VIP plots generated for the fitted spatial random forest 
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Fig. 4. The summary of the regression analysis that is used to derive the FFAttainable_SOC. (a) Depth 0–0.10 m and LRZ. (b) Depth
0.10–0.30 m and LRZ. (c) Depth 0.0–0.10 m and HRZ. (d) Depth 0.10–0.30 m and HRZ.

Fig. 5. Density plots for the calculated FFSOC_Attainable_Def concentrations by depth/precipitation classes.
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Table 2. Summary of the FFSOC_Attainable_Def concentrations by depth/precipitation classes. Units are expressed as mg C FF g−1 of <2 mm soil.

Name Min Quantile: 0.10 Median Mean s.d. Quantile: 0.90 Max

Depth 0–0.10 m and precipitation ≤600 mm −7.49 0.00 6.23 5.52 3.56 8.97 12.28

Depth 0–0.10 m and precipitation >600 mm −29.14 0.00 8.90 9.90 9.02 21.58 31.61

Depth 0.10–0.30 m and precipitation ≤600 mm −7.13 0.01 2.12 1.91 1.81 3.73 4.96

Depth 0.10–0.30 m and precipitation >600 mm −8.44 0.00 6.01 5.57 4.48 11.36 13.65

Table 3. Model evaluation statistics of the four optimal infrared/partial least squares regression (IR/PLSR) models of soils from 0–0.10m and 0.10–
0.30 m in low rainfall (LRZ; ≤600 mm) and high rainfall (HRZ; >600 mm) zones.

Model n LCCC (in-the-bag
validation)

LCCC (out-of-bag
validation)

RMSE (in-the-bag validation)
(mg C g−1 soil)

RMSE (out-of-bag validation)
(mg C g−1 soil)

LRZ

0–0.10 m 124 0.88 0.77 1.56 2.13

0.10–0.30 m 72 0.86 0.56 0.83 1.48

HRZ

0–0.10 m 172 0.90 0.83 3.67 4.66

0.10–0.30 m 107 0.92 0.78 1.56 2.61

The model evaluation statistics were generated using the mean of the hundred bootstrapped models.

Fig. 6. The mean β coefficients derived from the 100 bootstrapped partial least squares regression (PLSR) equations for
(a) 0–0.10 m in low rainfall zone (LRZ; ≤600 mm); (b) 0–0.10 m in high rainfall zone (HRZ; >600 mm); (c) 0.10–0.30 m in
the LRZ; and (d) 0.10–0.30 m in the HRZ.

models, respectively, for 0–0.10 m and 0.10–0.30 m depth smectite) as environmental covariates for the prediction of 
intervals. Having climate-driven variables, clay-silt content FFSOC_Attainable_Def demonstrated their importance on the 
(fine fraction) and clay mineral (i.e. illite, kaolinite and inflow and stabilisation of the SOC within the FFSoil. 
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Table 4. Model evaluation statistics of the two spatial random forest models fitted considering the 0–0.10 m and 0.10–0.30 m.

Model n LCCC (in-the-bag LCCC (out-of-bag) RMSE (in-the-bag validation) RMSE (out-of-bag)
validation) validation (Mg C ha−1) validation (Mg C ha−1)

0–0.10 m 4011 0.84 0.84 5.04 5.05

0.10–0.30 m 4012 0.87 0.87 5.37 5.38

The model evaluation statistics were generated using the mean of 100 bootstrapped spatial models.

Fig. 7. The estimated mean importance value for the considered environmental covariates used to estimate the FFSOC_Attainable_Def

through fitted 100 bootstrapped spatial Random Forest models. Table S1 describes the covariates. (a) Variable importance of covariates,
0–0.10 m. (b) Variable importance of covariates, 0.10–0.30 m.

Derived spatial estimates are in Fig. 8, and prediction 
uncertainty was calculated as 0.05 and 0.95 percentiles (see 
Supplementary Fig. S1). When the FFSOC_Attainable_Def values 
were closer to zero or negative, those regions have less potential 
to enhance the SOC in the FFSoil. The spatial pattern of the 
FFSOC_Attainable_Def demonstrates that some of the land areas 
under both LRZ and HRZ have FFSOC_Attainable_Def close to 
zero or negative. For example, in the state of Victoria, the HRZ 
Gippsland region generally reported less area under the 
positive stocks of FFSOC_Attainable_Def for the depth interval 
0–0.10 m compared to 0.10–0.30 m depth interval estimates. 

Similarly, in LRZ, the Mallee region reported less area 
under the positive stocks of FFSOC_Attainable_Def indicating 
less opportunity to increase the stable form of SOC in the 

FFSoil. The eastern boundary of Australia, mainly southern 
Queensland and New South Wales, reported higher positive 
stock values for the FFSOC_Attainable_Def indicating an opportunity 
to further enhance the SOC in the FFSoil. The predicted 
FFSOC_Attainable_Def stocks across Australia revealed an oppor-
tunity to increase current FFSOC by 3.47 GT and 3.24 GT for 
the 0–0.10 m and 0.10–0.30 m depth intervals, respectively. 
The average estimated positive FFSOC_Attainable_Def stock values 
were 13.35 Mg C ha−1 and 12.49 Mg C ha−1, respectively, for 
the 0–0.10 m and 0.10–0.30 m depth intervals. There was also 
discontinuity of spatial estimated FFSOC_Attainable_Def stock 
values in the north-south direction in the east of Australia 
caused by changes in the rainfall gradients of the input 
covariates. 
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Fig. 8. Distribution of the soil organic carbon attainable deficit stocks across major
agricultural production regions of Australia. The spatial estimates were made for specified
two depth intervals: (a) 0–0.10 m; and (b) 0.10–0.30 m.

Discussion

Developing a framework for rapid and cost-
effective estimation of FFSOC_Attainable_Def

concentrations using IR/PLSR modelling
framework

Chemometric models are frequently used to predict various 
chemical, physical and biological soil properties (Janik et al. 
1998; Viscarra Rossel et al. 2006; Stenberg et al. 2010). A 
range of studies have now demonstrated the ability to predict 
SOC and its fraction contents from IR spectra using chemo-
metric modelling approaches (Baldock et al. 2013c, 2018). 

For the SCaRP soil samples used in this study, Baldock et al. 
(2013c) demonstrated that SOC, SOC fractions, and total 
nitrogen contents could be predicted using IR spectral data 
and chemometric modelling. Baldock et al. (2018) extended 
the use of IR/PLSR estimated SOC contents and SOC fractions 
to characterise the vulnerability of SOC to subsequent loss in 
agricultural soils from New Zealand. 

Only a few studies (see Baldock et al. 2019) have used a 
combined IR dataset and chemometric modelling approach, 
similar to that developed in this study, to derive a unique 
prediction algorithm for quantifying the FFSOC_Attainable_Def 
of the FFSoil. Baldock et al. (2019) demonstrated an ability to 
derive the values of key soil properties identified as drivers of 
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FFSOC_Attainable by Beare et al. (2014) as well as an ability to 
directly predict measured FFSOC_Attainable and FFSOC_Attainable_Def 
from the acquired IR spectra. However, neither Baldock et al. 
(2019) nor the supporting work of Beare et al. (2014)  or 
McNally et al. (2017)  examined the potential impacts that 
rainfall and soil depth or similar drivers of SOC accumula-
tion would have on the derivation of both FFSOC_Attainable and 
FFSOC_Attainable_Def. Further, these previous studies (Beare 
et al. 2014; McNally et al. 2017; Baldock et al. 2019) did not 
define the deficit as FFSOC_Attainable_Def. Instead, the application 
of a 90th quantile regression to the FFSOC_Actual across a range 
of soils was assumed to provide a measure of the potential 
upper limit that FFSOC_Actual could reach. This upper limit of 
FFSOC_Actual was considered an appropriate value on which to 
base the calculation of saturation deficit irrespective of soil 
properties, environmental conditions, or applied management 
practices that can all influence the amount of carbon captured 
by plants and added to the soil. 

Deriving the soil organic carbon attainable deficit
concentrations using broad drivers

A range of environmental factors and soil properties affect the 
flow of carbon into the soil, how that carbon can be stabilised 
within the soil matrix, and the fraction that is lost from the soil 
back to the atmosphere. In Australian dryland agricultural 
systems, potential dry matter production of crops and pastures 
is dominantly dictated by rainfall. While an attempt was made 
to develop different quantile regression models considering 
soil depth (i.e. 0–0.10 m vs 0.10–0.30 m) and using a broad 
classification of environmental drivers that affect carbon 
flows (i.e. LRZ vs HRZ), we acknowledge that, if available, 
a higher number of measurements could and enable 
FFSOC_Attainable_Def to be derived based on local properties that 
govern the inputs and their subsequent biological processing 
as well the stability of SOC. Although the capacity of soils to 
store SOC in a stable form is commonly attributed to the FFSoil 
(clay + silt), there are other properties such as specific surface 
area, extractable aluminium (pyrophosphate) content of soils, 
and soil pH that affect the SOC stabilisation capacity (Beare 
et al. 2014; McNally et al. 2017). In contrast, the emphasis 
in this study was focused on quantifying the loading of organic 
carbon within the FFSoil (i.e. the FFSOC_Actual concentration) 
within soils collected from different depths from sites 
having different mean annual precipitations. 

The framework adopted allowed us to create scalable 
products on FFSOC_Attainable_Def, from point estimates to spatial 
estimates using readily available datasets. In contrast to the 
current study, McNally et al. (2017) developed an empirical 
model to predict the SOC stabilisation based on the broader 
soil types (allophanic vs non-allophanic soils) covering 
topsoils (0–0.15 m) of New Zealand permanent pasture and 
cropping soils. Our analysis revealed that estimated quantile 
regression coefficients reported different SOC loadings of the 
FFSOC mass (y-axis in Fig. 4) and also the rate of stabilisation 

(slope of the regression respective models, supplied in the 
supplement Table S2) with change in FFSoil mass after 
considering the broad rainfall classification and depth intervals. 
This result demonstrated that performing quantile regression 
analysis to estimate the FFSOC_Attainable_Def is interlinked to the 
key drivers that govern the flow of carbon into soil systems. In 
fact, we found unrealistic values of the FFSOC_Attainable_Def if the 
values were derived from the global analysis (Fig. 3), due to 
input datasets consisting of different precipitation gradients 
and sampling depth intervals. In this study, due to limited 
measurement dataset, only broad rainfall classification and 
depth intervals were considered in defining FFSOC_Attainable_Def. 
We concluded that local analysis to derive FFSOC_Attainable_Def 
is a more appropriate way forward compared to the use of a 
single global analysis in future studies. 

Are attainable deficit estimates static or
dynamic?

The key assumption made in the current analysis is that 
the upper 90th quantile regression, used to define the 
FFSOC_Attainable, should be applied separately to groups of 
soils differentiated based on the magnitude of FFSOC_Actual 
drivers. The magnitude of carbon input to soil represents an 
additional driver that was not included in the analyses 
completed due to a lack of site-specific data. Although the 
results were strongly influenced by mean annual precipita-
tion, plant productivity and thus carbon inputs to the 
soil within dryland agricultural regions of Australia are 
significantly impacted by management practice. Hochman 
et al. (2016) reported that the average wheat yield in 
Australia was 1.7 Mg ha−1 (1996–2010), and the average 
simulated water-limited yield potential was 3.5 Mg ha−1. 
Their analysis revealed an average wheat yield gap of 
1.8 Mg ha−1 representing 51% of the potential yield. If the 
yield gap can be reduced without altering the harvest index 
or root/shoot ratios and stubbles are retained the flow of 
carbon to the soil can be increased. Under such conditions, 
calculated FFSOC_Attainable_Def values for a given soil depth 
and mean annual precipitation might change due to 
increased carbon flow to the soil. Thus, values obtained for 
FFSOC_Attainable and FFSOC_Attainable_Def should be considered 
dynamic and continually recalculated as improvements in 
productivity are realised through the use of improved 
genetic material and management practices. 

The above discussion then leads to the question of what is 
the appropriate manner to refer to the SOC deficit when 
values are derived from a range of soils considered to be 
representative of current agricultural management practices? 
Do the values derived provide an indication of the potential 
upper limits of FFSOC_Actual that may be possible for the soils 
or are they only representative of what can be obtained 
using previous and current management practices and types 
of crop/pasture types grown? As a result, we argue that 
the approach used in this study and previous studies 
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(e.g. Beare et al. 2014; McNally et al. 2017; Six et al. 2002) 
defines an FFSOC_Actual stock that is attainable (i.e. the 
FFSOC_Attainable) given the current soil properties, environmental 
conditions and applied management practices and not a 
potential upper limit of FFSOC_Attainable_Def. The potential upper 
limit of FFSOC_Attainable_Def should be considered as conceptual, 
unknown and undefinable. Thus, when attempting to quantify 
the FFSOC_Attainable_Def based on FFSOC_Actual values obtained 
across a range of soils, it should be defined as an attainable 
deficit rather than a potential deficit. 

Identification of spatial drivers of FFSOC_Attainable_Def

Previous work on Australian continental scale spatial 
modelling of SOC includes mapping of SOC stocks (Viscarra 
Rossel et al. 2014), and SOC fractions (Viscarra Rossel et al. 
2019; Román Dobarco et al. 2022); however, no literature 
was found on spatial modelling of the FFSOC_Attainable_Def. 
Therefore, a comparison of the spatial drivers of 
FFSOC_Attainable_Def found in this study was completed against 
previously published Australian literature on total SOC and 
HOC. Similar to the current analysis of FFSOC_Attainable_Def 
spatial modelling (0–0.10 m and 0.10–0.30 m), Viscarra 
Rossel et al. (2014) reported that for the Australian cool 
temperate and temperate-Mediterranean regions rainfall 
was a key driver of the SOC stocks (0–0.30 m). Viscarra 
Rossel et al. (2014) used annual cumulative rainfall as a 
driver of SOC stocks, while in the current analysis, season 
rainfall was used in addition to cumulative annual rainfall. 
Further, Viscarra Rossel et al. (2019) identified climate 
drivers, namely, mean annual temperature, mean annual 
precipitation, and potential evapotranspiration, as the highest 
ranking important variables for estimating SOC using a global 
variable importance analysis for the continental scale mapping 
of the HOC. Similar climate drivers governed the spatial 
distribution of FFSOC_Attainable_Def in the current study for both 
depth intervals (Fig. 7). Román Dobarco et al. (2022), used  
isometric log-ratio transformation (ilr) for the SOC fractions, 
namely POC, HOC and ROC, instead of mapping those 
fractions using individual models. Therefore, direct comparison 
with the current study is not feasible. However, their two ilr 
models revealed that radiometric and climate variables were 
key drivers for the respective models fitted for the considered 
depth intervals, namely 0-0.05 m, 0.05–0.15 m, and 0.15– 
0.30 m. Only one radiometric variable was included in the 
current study when considering the top 15 variables based 
on VIP ranking. Overall, it can be concluded that key drivers 
of the FFSOC_Attainable_Def followed a similar pattern to drivers 
of the SOC and its fraction stocks for the Australian context. 

How the current proposed framework differs
from the existing approaches used to quantify
soil organic carbon storage

As discussed earlier, our approach was based on defining the 
FFSOC_Attainable_Def associated with the FFSoil. Further, we 

deployed an empirical approach through the fusion of: (1) 
measurements of FFSOC_Actual and FFSoil masses; (2) statistical 
modelling (i.e. quantile and IR/PLSR regression modelling); 
and (3) spatial upscaling through an ensemble machine 
learning approach. From the carbon accounting perspective, 
the total SOC is used to define the carbon storage capacities. 
This can cause volatility due to residence time of different 
SOC fractions, particularly labile forms of SOC. On the other 
hand, the current approach is conservative and focuses on the 
more stable forms of SOC resulting in less vulnerability and 
potential volatility. For example, Padarian et al. (2021) 
used an empirical approach to quantify the SOC storage 
capacity using total SOC stocks through the development of 
a machine learning quantile regression model. In contrast 
in the current analysis, the FFSOC_Attainable_Def was derived 
using the loading of carbon in the FFSoil. 

Implications

Current analysis revealed the successful use of the IR/PLSR 
models beyond the prediction of concentration of SOC and 
its component fractions and their vulnerability to loss. In 
fact, IR/PLSR models developed herein for FFSOC_Attainable_Def 
can be used along with other IR tools to evaluate the current 
status of the SOC, its composition, vulnerability and 
attainable space, adding extra value for the landholder and 
carbon aggregators. These IR-derived datasets will provide 
a better assessment of the attainable SOC deficit and aid in 
the derivation of realistic carbon sequestration targets 
within future carbon projects. 

Further, derived spatial estimates and their prediction 
uncertainties can be used to evaluate the potential of land 
parcels to increase SOC sequestration in the FFSoil. We have 
derived the spatial estimates at a resolution of 90 m, which 
will provide a meaningful insight at the regional scale, but 
applications are limited to the paddock scale. These derived 
estimates will provide insight into the attainable mineral-
associated SOC that can be further increased. Although these 
estimates are derived based on the previous and current land 
management practices, the estimates will provide firsthand 
information for the aggregators to explore land parcels that 
have a higher potential to increase SOC, higher ability to 
retain carbon/permanence through mineral association and 
minimise the risk of reversal. With the spatialised outputs 
generated at a 90 m spatial resolution, the outputs could be 
used as guidance information rather than explicit information. 
However, the framework developed in the current study could 
be used to generate project-specific information through a 
combination of IR/PLSR and spatial modelling using the 
project specific datasets. For policymakers, these spatial 
estimates will enable the identification of regions where 
targeted policies can be implemented when designing 
SOC projects. For project and policy scale applications, the 
generated spatial outputs should be used while considering 
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Fig. 9. Pathways to market and linkage to carbon policies for the derived FFSOC_Attainable_Def datasets.

their uncertainties. The graphical summary of the pathways to 
market and policy directions is depicted in Fig. 9. 

Conclusions

The framework developed to evaluate the FFSOC_Attainable_Def 
used a previously collected dataset generated via the fractiona-
tion scheme presented by Baldock et al. (2013a). Continuous 
update of the derived FFSOC_Attainable_Def values will be required 
when new datasets covering different or new management 
practices capable of improving the capture of carbon and its 
addition to soil become available. The derived FFSOC_Attainable_Def 
values were based on the previous and current land manage-
ment practices operating at the time the soils were collected. 
With improvements to productivity and an emphasis on 
carbon retention within agricultural systems over the last 
decade, the FFSOC_Attainable and FFSOC_Attainable_Def values derived 
for the soils included in this study may require updating 
through the collection and analysis of new soil samples. 
Therefore, the analysis framework developed provides a 
more appropriate mechanism for assessing the potential 
additional accumulation that is possible within the fine 
fraction of a soil. 

Supplementary material

Supplementary material is available online. 
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