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ABSTRACT

Context. Legacy data from prior studies enable preliminary analysis for soil security assessment
which will inform future research questions. Aims. This study aims to utilise the soil security
assessment framework (SSAF) to evaluate the capacity of soil in fulfilling various roles and
understand the underlying drivers. Methods. The framework entails: (1) defining a combination
of role(s) × dimension(s) and identifying a target indicator (a soil property that can be used to
evaluate a particular role× dimension combination) or a surrogate indicator (an alternative indicator
when there is not a clear target indicator); (2) transforming the indicator into a unitless score (ranging
from 0 to 1) using a utility graph based on expert knowledge; (3) fitting the remaining soil properties
(potential indicators) into utility graphs and weighing them using (a) ordination and (b) regression
method. The application of this framework is demonstrated in evaluating two soil roles: nutrient
storage and habitat for biodiversity (with pH and microbial DNA Shannon’s diversity index as
surrogates, respectively) for an area in the lower Hunter Valley region, New South Wales, Australia.
Key results. The regression model provides utility estimates that were similar to those obtained from
surrogates, in comparison to the utility derived from the ordination model. Conclusions. This study
provides a methodological pathway to examine the capacity and drivers of fulfilling different soil roles.
The standardisation of this method opens the door to a complete quantification under the SSAF.
Implications. Indicators derived from a legacy dataset can be used for soil security assessment.

Keywords: habitat for biodiversity, indicator, indicator selection, legacy dataset, minimum dataset,
nutrient storage, ordination, principal component analysis, regression, soil security assessment
framework, surrogates, utility graphs.

Introduction

Soil is an essential natural resource for the existence of our life on the planet. Its significance 
extends beyond food production, as it provides a habitat for a vast range of biodiversity, acts 
as a carbon and nutrient store, and supports various life-sustaining functions. Various soil 
concepts have been developed since the early to the mid-twentieth century (Karlen et al. 
2019; Evangelista et al. 2023a) which highlight the evolution of these concepts through 
time. All these concepts were aimed to raise awareness of the need to protect soil. 
Contemporary soil concepts such as soil health are described to be more holistic about the 
overall well-being of the soil environment; however, they often focus on the soil function to 
produce food and biomass. In order to perpetuate humanity and planetary functioning, 
there is a need to consider all of the soil security dimensions as described by Evangelista 
et al. (2023a, 2023b). 

Soil security (McBratney et al. 2014) is an overarching concept that aims to protect the 
soil based on five dimensions (capacity, condition, capital, connectivity, and codification) 
and three different roles: its functions, services, and resilience to threats (Evangelista et al. 
2023b). A full assessment will require multiple sub-assessments for each function, service, 
and threat. Through these roles and dimensions, the soil security concept encompasses soil 
health and soil quality, which correspond most closely with the dimensions of condition 
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and capacity, respectively. Furthermore, broader evaluations 
of soil quality or health with respect to soil threats and other 
services has rarely been implemented (Bünemann et al. 2018). 

Reviews of existing soil assessments (Bünemann et al. 
2018), the history of soil assessments (Karlen et al. 2019), 
and future prospects of soil assessments (Lehmann et al. 
2020) have been recently published. In this paper, we review 
six assessment frameworks to highlight differences in their 
approach and structure: the functional capability classifi-
cation (FCC; Sanchez 2019), the environmental assessment 
of soil for monitoring (ENVASSO; Huber et al. 2008), soil 
management assessment framework (SMAF; Andrews et al. 
2004), soil quality sssessment (SQAPP; Spiegel et al. 2015), 
the comprehensive assessment of soil health (CASH; 
Moebius-Clune et al. 2016), and the soil security assessment 
framework (SSAF; Evangelista et al. 2023a, 2023b). 

A common factor for all assessment frameworks is the need 
to select soil indicators, defined as a collection of soil 
properties that have greatest sensitivity to changes in the 
assessment for a particular soil function, service and/or threat 
under a particular soil dimension. Indicators should integrate 
physical, chemical, and biological soil properties and processes 
(Doran and Parkin 1997) and whenever possible, be 
inexpensive and easy to measure to enable greater rates of 
sampling or monitoring (Schoenholtz et al. 2000). Prescriptive 
assessment frameworks such as the CASH, ESMAF, and 
SQAPP have selected indicators based on regional datasets 
from which indicators were narrowed down from a larger 
list created by expert knowledge. These frameworks have 
18, ~14, and six indicators for the CASH, ESMAF, and 
SQAPP, respectively. However, the availability of indicators 
in prescriptive assessments may not be captured by existing 
datasets or legacy data, resulting in the need to gather new 
information, which may be time and cost intensive. By not 
utilising existing or legacy data, the ability to investigate 
soil security in the past is also hindered. Hence, there is a 
demand for an objective and adaptable framework, such as 
the SSAF, which is capable of utilising existing and legacy 
databases to derive insights into past soil security and inform 
future research. 

The SSAF is more advanced than the other frameworks in 
the sense that it does not necessarily require a target indicator. 
If the target indicator has been independently measured, a 
utility graph (transformation of indicator values into utility 
scores) as a function of target indicator can be fitted. 
However, in the case where the target indicator is not 
available, a surrogate indicator can be nominated. The use 
of a surrogate has been adopted by various stakeholders, 
namely modellers, scientists, agriculturalists, and land 
managers; thus, total organic carbon can be used as a proxy for 
various soil processes, such as aggregate formation, water 
retention, and nutrient cycling. Utility score, usually repre-
sented on a common scale (0–1), explains the variation of 
relationships between the soil indicator and assessment for 
a particular soil role. In this paper, we investigate methods 

which build upon a standardised approach using an ordina-
tion method, such as principal component analysis (PCA) 
(Andrews and Carroll 2001; Andrews et al. 2002a, 2002b) 
and a regression method to quantitatively select and integrate 
indicators from existing and legacy datasets, enabling the 
derivation of soil security information. Such an objective 
and adaptable framework should also guide users on the 
integration of chosen indicators which serve as a crucial 
communication tool among stakeholders, allowing a compre-
hensive understanding of the underlying factors associated 
with each indicator. 

Although soil provides humanity with many different 
roles, in this study, we will explore the use of the proposed 
framework on two case studies exploring different soil 
functions in the capacity dimension: habitat for biodiversity 
and store and regulator of nutrients. Biodiversity contributes 
to many important ecosystem functions (Wall et al. 2015; 
Guerra et al. 2020). Soil microbial biodiversity indicators 
may be especially important to understand changes in soil 
processes given their interaction with soil structure and 
their sensitivity to land management (Hartmann and Six 
2023). Furthermore, soil also serves as a reservoir of nutrients, 
providing essential macro- and micronutrients to sustain plant 
and animal growth and contribute to a range of environmental 
services such as climate regulation through the cycling of 
nutrients. The decomposition of various sources in the soil 
(e.g. organic matter) and weathering of parent material (e.g. 
minerals) contribute to elemental storage, and the cycling of 
nutrients is regulated through the transformation and 
translocation by various soil properties (e.g. environmental 
factors). A nutrient imbalance in soils has been increasingly 
considered a primary limiting factor of agricultural produc-
tivity in Africa and India (Pathak 2010; Stewart et al. 2020). 
Where soil infertility is recognised as poor soil quality 
(capacity) and in poor health (condition), it poses a great 
threat to soil security, thus exacerbating global challenges. 

Soil assessment frameworks

The SSAF, a newly developed comprehensive framework, 
offers a cohesive approach to understanding soils, guiding 
surrogate selections for soil functions, services, and threats 
(Evangelista et al. 2023b). It encompasses five key dimensions: 
capacity, condition, capital, connectivity, and codification, 
enabling a holistic perspective on soil analysis. Following 
this concept allows us to acknowledge gaps in our under-
standing about what may be impacting a site’s soil security. 
Like the SMAF and CASH, the SSAF follows three steps: 
(1) selecting indicators for a management goal from the 
existing dataset; (2) interpreting indicators by transforming 
the selected indicators into a unitless value or score; and 
(3) where appropriate, integrating the scores into a single 
value. The SSAF and SMAF do not prescribe indicators to 
use or the type of integration, recognising that there are 
an increasing number of algorithms that may be used 
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(Evangelista et al. 2023b). Although the SSAF is not 
prescriptive on the indicators to use, its all-inclusivity provides 
guidance as to what indicators to seek and how to connect 
different aspects of soil security together. 

The fertility capability classification (FCC), created in 1975 
to characterise plant growth limitations in the tropics due to 
its focus on the function of soil as a producer of food and 
biomass, now describes soil characteristics relevant to both 
agronomic and ecologic disciplines across the world (Sanchez 
2019). This framework is different from the others discussed 
by its focus on quantifying soil attributes of the top 50 cm 
considered to be inherent, or not easily changed within a 
span of years to decades (Sanchez et al. 2003), and being 
highly relevant to understanding soil security, such as soils 
with high phosphorous sorption capabilities, high leaching 
potential, and sodic soils. A set of 31 binary indicators, presence 
or absence, describing 20 different soil attributes along with 
a textural description of topsoil and subsoil have been 
developed over 40 years from expert knowledge. Within the 
SSAF framework, these inherent indicators would be classified 
under the capacity dimension and distinguished by their 
connection to a soil function of food and biomass production. 

In Europe, as part of the ENVASSO project, 27 soil 
indicators were identified from an initial selection of 290 
to protect soils in the EU (Huber et al. 2008). Potential 
indicators (PI) were obtained from literature review; indicators 
were then linked to nine soil threats and key issues within the 
respective threat, and final indicators chosen by expert 
judgment. This framework is slightly different from the 
other frameworks mentioned due to its distinctiveness in 
choosing a more specific set of indicators comprising three 
indicators per threat assessed, called TOP3. These indicators 
were carefully selected based on expert insights, considering 
their alignment with EU policy objectives. Similarly, the SSAF 
also considers policy aspect within its codification dimension 
which can be evaluated across various roles. 

The SMAF, introduced by Andrews et al. (2004), is a site-
specific tool designed to assess and evaluate soil management 
practices, particularly in relation to soil quality (capacity). As 
described above, the SMAF introduced the three steps used 
in the SSAF and CASH. This flexible framework is not 
prescriptive; however, the authors have identified over 70 
PI and developed scoring functions for over a dozen along 
with a protocol to create the scoring functions (Wienhold 
et al. 2009). The CASH framework was derived based on the 
SMAF (Moebius-Clune et al. 2016) and focused on overall soil 
health (condition) within agricultural systems through the 
combined use of a predefined set of 18–25 indicators (from 
basic to NRCS-216 level of soil health analysis) covering the 
physical, biological, and chemical soil properties. It is then 
transformed into a score following the method described in 
Andrews et al. (2004), with value ranging from 0 to 100, with 
a higher number indicating optimum or near optimum condi-
tion. The scoring functions are texture based but undergoing 
efforts to account for texture, suborder classes, and mean 

annual temperature and precipitation in the continental USA 
using the Soil Health Assessment Protocol and Evaluation 
(SHAPE; Nunes et al. 2021). The overall soil health index 
(SHI) is determined by taking the average of all indicators 
measured. Within the SSAF, these indicators which are 
sensitive to anthropogenic activities would be classified under 
the condition dimension. In the SSAF, condition indicators of 
a target are compared to an area with similar pedogenic origin 
but minimal anthropogenic impact. Pedogenon can be 
defined as a conceptual soil taxon created from a regionalised 
set of quantitative state variables representing the soil-forming 
factors for a given reference time (Román Dobarco et al. 2021). 

The SQAPP was formed to account for the impact that 
agricultural land management has had on soil properties 
and functions to be accessed via a mobile application. Six soil 
quality indicators were ultimately chosen based on work by 
Spiegel et al. (2015) and Bünemann et al. (2018): soil organic 
matter (SOM) content, pH, aggregate stability, water-holding 
capacity, and number of earthworms. The indicators are 
meant to show gradual soil quality and fertility changes in a 
span of more than 5 years, be soil and site specific, related to 
potential changes in soil functions and threats, and be easily 
interpretable by farm and land managers (Bai et al. 2018). 
Indicators in the SQAPP are presented as response ratios (RR) 
where the treatments were paired; for example, crop rotation 
versus monoculture. Rather than providing an integrating 
score, the SQAPP presents the results in radar charts, consistent 
with the idea that each indicator needs to be looked at 
individually. With the use of an application, this framework is 
focused on improving the connectivity different land managers 
have with their soil; connectivity is another dimension 
recognised under the SSAF and under which SQAPP data can 
be used to inform researchers and legislators. 

The uniqueness of the SSAF lies in its ability to encompass 
multifaceted aspects of soil security. Unlike its counterpart’s 
framework that focuses solely on a certain dimension, the 
SSAF adopts a holistic approach. In the next section, methods 
implemented in the SSAF framework will be described. 

The aims of this paper are to: 

1. Present a new approach by identifying surrogate indicator 
and fitting a utility graph, 

2. Develop a workflow of screening for potential indicators 
and estimating their utility using: (a) ordination, and (b) 
regression methods, and 

3. Investigate two case studies testing the proposed approach 
and making a brief comparison of the two different 
methods mentioned above. 

Methods

Study area and dataset

The study area is located in the Hunter Wine Country Private 
Irrigation District (HWCPID), New South Wales, Australia, 
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Fig. 1. Location of the sampling points for case studies within the
Hunter Wine Country Private Irrigation District (HWCPID) shown in
the red border on a May 2023 Landsat-9 image courtesy of the U.S.
Geological Survey. The inset shows the location of the HWCPID
within Australia. The Australian map shows territory and state divisions.

covering an area of approximately 220 km2 (Fig. 1). The 
climate in this region is temperate, with annual rainfall of 
750 mm and seasonal temperature ranging from 4 to 30°C. 
The soil samples were collected in October 2019 across from 
the native forests belonging to three dominant soil orders 
(Chromosols, Kurosols, and Calcarosols) according to the 
Australian Soil Classification system (ASC). Following the soil 
map developed by Huang et al. (2018), the soil types within 
the study area can be mainly categorised into: Brown 
Chromosol, Brown and Red Kurosol, and Red Calcarosol. 

The dataset used corresponds to a subset of the data 
collected for a previous study by Xue et al. (2023). Eighteen 
sampling sites were selected, in which three soil cores 
(10 cm diameter) were collected as replicates. Within each 
soil core, the soil samples were collected across three depths 
(5–15 cm, 45–55 cm, and 90–100 cm) from the soil surface to 
1 m depth. 

A series of soil analyses were performed. For each soil 
sample, half was air-dried and ground to <2 mm prior to 
analysis through a commercial laboratory for 16 physico-
chemical properties following methods described in Rayment 
and Lyons (2011). Analysis measured include (with method 
codes from Rayment and Lyons 2011): pH (1:5 CaCl2) – 4B2; 
organic carbon (OC; Walkley and Black 1934) – 6A1; total 
nitrogen (N) (combustion) – 7A5; electrical conductivity 

(EC; 1:5 water) – 3A1; exchangeable aluminium (exch. Al; 
1 M KCl) – 15G1; exchangeable sodium (exch. Na; 1 M 
NH₄CH₃CO₂) – 15D3; cation exchange capacity (CEC) – 15J1; 
and total (acid digest) phosphorus (P), copper (Cu), calcium 
(Ca), magnesium (Mg), manganese (Mn), nickel (Ni), 
potassium (K), sulfur (S), and zinc (Zn) – 17B1. Any elemental 
values that fall below the detection limit were recorded as 
zero (absent). The other half of the soil sample was subsampled 
and stored in the freezer (~ −20°C) before soil DNA 
extraction. Soil DNA was extracted from 10 g soil following 
the protocol provided in the supplementary (Supplementary 
A) in Metagen Lab®. DNA concentration was quantified 
using the Quantifluor dsDNA system (Promega, WI, USA). 
Primer sets of ArBa515F/Arch806R were used for polymerase 
chain reaction amplifications. Amplicon pyrosequencing was 
then sequenced on the Illumina MiSeq platform (PE 300). The 
sequencing data was filtered and merged using USEARCH 
(v.7.0) (Edgar 2010) and the merged sequences were clustered 
into operational taxonomic units (OTUs) by UPARSE (Edgar 
2013). Soil microbial alpha diversity was calculated by 
Shannon index using the rarefied OTU table with vegan 
package (v2.6.2; Dixon 2003). For detailed information 
about the methods, we refer the reader to the original study 
(Xue et al. 2023). Two examples from this dataset are 
presented to exemplify the utilisation of the SSAF. 

SSAF procedure

To evaluate the soil security assessment, a combination of a 
single or multiple roles (function, service, or threat) along with 
a single or multiple dimensions per role (capacity, condition, 
capital, connectivity, and codification) needs to be identified, 
as outlined in the SSAF (Evangelista et al. 2023b). 

Once the combination of role(s) and dimension(s) have 
been identified, the SSAF procedure shown in Fig. 2 can be 
undertaken. 

1. Identify a surrogate indicator, 
2. Transform the surrogate indicator to a utility score using 

the utility graph, 
3. Transform the remaining indicators (potential indicators) to 

utility scores by fitting them against the utility graphs of 
the surrogate indicator and screen indicators fit using  an  
F-test, 

4. Weigh these screened potential indicators using: 
a. An ordination method, and 
b. A regression method. 

The subsequent sections will elaborate on each step of the 
SSAF procedure. 

Role × dimension combination and surrogate
identification

Although it is vital to measure soil security as a whole, the 
assessment can be done through a combination of role and 
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Fig. 2. Conceptual framework for proposed soil security assessment framework (SSAF) method to create minimum dataset using (IVa)
ordination and regression (IVb) method. U* is the utility of the transformed surrogate, PI is potential indicators, USPI is the utility of F-test
screened potential indicators (SPI), and Û is the estimated utility. The obelisk (†) shows that the choice of regression will impact the
outputs. In the case of neural networks, Û is the main output.

dimension depending on the goals set by the stakeholders. In 
most cases, a directly measurable target indicator that 
encapsulates a particular role × dimension pairing is rarely 
available and expert opinion is leveraged to infer a suitable 
surrogate indicator (Fig. 2 – section I). 

Utility functions for surrogates
To facilitate interpretation and possible integration of 

role × dimension combinations, the variable or surrogate 
indicator needs to be transformed into an ordinal or unitless 
score using a utility graph as discussed by Evangelista et al. 
(2023a). A utility graph represents the relationship between 
the values of the surrogate indicator on the x-axis and 
the utility of role × dimension combination (U*) (Fig. 2 – 
section II). 

Once a surrogate for the role × dimension combination is 
chosen, the remaining soil properties in the dataset are 
referred to as PI. 

Fitting utility graphs and screening for potential
indicators

Each PI is mapped against U* across various possible 
curves to identify the best fit, be it linear, quadratic, expo-
nential, or logarithmic. Subsequently, an F-test is applied to 
each fit to determine its statistical significance, with a 
P-value threshold set at less than 0.05. Indicators that demon-
strate a significant correlation are retained, hereon referred to 
as screened potential indicators (SPI). This method is similar 
to the non-parametric approach described by Andrews and 
Carroll (2001). Feature selection based solely on numerical 
reasoning is regularly done to make the models more robust, 
handle multicollinearity, reduce overfitting, and increase 
computer efficiency. 

Potential indicator utilisation and weighting
Two of the most commonly used methods of weighting PI 

were explored: ordination and regression. 
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Ordination by principal component analysis. Principal 
component analysis is used as the ordination technique to 
assign weights to the PI, following the methods described 
in Andrews and Carroll (2001), Andrews et al. (2002a), and 
Andrews et al. (2002b) with slight modifications (Fig. 2 – 
section IVa). First, the transformed USPI was used instead of 
using the SPI directly, and also normalised the final weights 
to add up to one. Details of this method are described in Fig. 3. 

In short, the principal components (PC) with large 
eigenvalues (≥1) were selected (Andrews and Carroll 2001; 

Fig. 3. Conceptual framework using PCA for dimension reduction
with steps proposed in this paper indicated by an obelisk (†). PC is the
principal component, USPI is the utility of F-test screened potential
indicators, Wn = % variation explained by nth selected PC/∑ %
variation explained by all selected PCs.

Andrews et al. 2002a, 2002b). However, if less than three 
PC had eigenvalues of ≥1, another PC that explained ≥5% 
variations within the dataset was also included (Andrews 
et al. 2002a). Within a particular PC, any SPI that had absolute 
values of loadings within the range of 10% of the highest 
factor loading were kept. The following steps depend on 
the number of identified properties: 

1. If there is only one property identified, the property is 
included in the selected indicators. 

2. If there are two properties identified, a correlation analysis 
is performed. If the properties are uncorrelated (|r| < 0.6), 
both properties are included in the selected indicators. 
(Andrews et al. 2002a). However, if both properties are 
correlated, the property that has the higher loading is 
included. 

3. If there are more than two properties identified, a correla-
tion analysis is also performed. Properties that are 
uncorrelated (|r| < 0.6) are included in the selected 
indicators. From the correlated properties, if only two are 
left, the one with the higher loading is included. If more 
than two are left, only the property that has the highest 
absolute values of sum of correlation coefficient is included. 

Each selected indicator has a weight corresponding to the 
PC from which it was selected. The weights for each PC can be 
obtained by dividing the percent of variation explained by the 
PC by the sum of percent variation explained of all selected PC 
(eigenvalues ≥ 1). Note that an indicator can be selected in 
more than one PC. This happens when there is a non-linear 
relationship with the rest of the properties and a single PC 
is not capable of capturing all the variation. We could not find 
examples of this in previous studies. Additionally, unlike 
Andrews et al. (2002b), the final weights were normalised to 
sum to one, instead of having an unbounded score, greater 
than one. 

The final estimated utility of a role, (Û 
role) then corresponds  

to the weighted sum of all the selected indicators (Eqn 1). 

n 
Û 

role = Wi × Û i (1) 
i = 1 

X

Where Û 
role is the estimated utility of soil for the given role, 

Wi is the weight of indicator i, and Û is the utility of indicator 
i to support a particular certain role. 

In the ordination case, obtaining best-fit curves for each of 
the indicators corresponds to generating a series of univariate 
regressions to predict the utility. Each indicator can then 
generate its own estimate of the utility and all the estimates 
are combined using a weighted average where the weights 
are obtained by PCA. This approach helps to rationalise the 
effect of each individual indicator but disregards interactions 
between indicators. 
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Regression. To overcome the limitations of the ordination 
method, the use of multivariate regression approach using a 
neural networks model is explored. In this context, neural 
networks present two desirable properties: (a) they can fit 
non-linear relationships between indicators and the utility, 
and (b) they can also consider interactions between 
indicators (Fig. 2 – section IVb). 

Here, two types of regression methods were explored: (1) 
with the complete set of PI and (2) only using indicators 
selected by the F-test screening. Since the number of observa-
tions was limited, a small neural network architecture was 
utilised with two hidden-layers and tanh activation functions. 
The number of neurons was set depending on the number of 
inputs, with 15 and five neurons for the two hidden layers in 
the case of using the 16 PI and four or five, and two for the 
hidden layers in the case of only using selected indicators. 
For the output of the model, a sigmoid activation function, 
which limits the output to the 0–1 range, was used. The 
models were trained for 200 epochs, using a learning rate of 
0.0005 and a batch size of 10 samples. The hyper-parameters 
were found using a grid search using two randomly selected 
sites as validation set. The model was also trained with early 
stopping in place to avoid overfitting. 

In the case of regression, it is not always possible to obtain 
explicit weights for each indicator as in the case of ordination 
(PCA). If that is a priority, multiple linear regression can be 
utilised to obtain weights for each indicator. In the case of 
neural networks, the final estimated utility Û 

role is predicted 
directly using the internal weights of the neurons which are 
adjusted during the training process. 

Model evaluation

The performance of the ordination and regression model was 
evaluated using coefficient of determination (R2), and root 
mean square error (RMSE) based on the agreement of the 
estimated utility from the surrogates and those from PI and 
SPI. R2 represents the proportion of total variance in the 
target variable explained by the model. It assesses how well 
the utility is approximated by model predictions. RMSE 
utilises the square root of the sum of the squares of the 
residuals to evaluate the performance of the model, where 
it is adjusted by the number of observations. It describes 
how close the estimated utility from the model is to the 
observed utility from the surrogates. 

Implementation

The data analyses were conducted in Python (v3.6.9; Python 
Software Foundation 2021) using packages from matplotlib 
(v3.6.2; Hunter 2007), statsmodels (v0.13.5; Seabold and 
Perktold 2010), scikit-learn (v1.2.0; Pedregosa et al. 2011), 
and Tensorflow (v2.4.1; Abadi et al. 2016). 

Results

Case study 1. Function: a habitat for, and of,
biodiversity

Identifying soil function/threat/service and
dimension surrogate

For this case study, Shannon diversity index (H 0) is selected 
as the surrogate indicator. The Shannon index (Shannon 
1948) is one of the popular metrics used in ecology. It’s 
based on Claude Shannon’s formula for entropy and estimates 
species diversity, which considers the number of species 
living in a habitat (richness) and their relative abundance 
(evenness). 

Fitting a utility graph for the surrogate
The utility graph of Shannon index shows increasing utility 

as the Shannon index increases, as a diverse microbial 
community is desired. It is also assumed that this relationship 
is sigmoidal, reflecting the idea that synergistic interactions 
between soil fauna improves the utility up to a certain point. 
Overall, the sigmoidal shape (Eqn 2) of our utility graph 
covers the range in our data and has the inflection point at 
the mid-point (Fig. 4). 

1
Ubiodiversity = 

1 + e−H0 +3.5 (2) 

Fitting utility graphs and screening
After selection of the surrogate property, the remaining 

datasets are the PI. Upon screening with the F-test, only six 
models fit the population of their respective property well 
enough to be passed on to the next step: Mg, EC, exch. Na, 
OC, S, and pH (Fig. 5). The following variables were thus 
not part of the subsequent PCA: total N, P, Cu, Ca, Mn, Ni, 
K, and Zn, as well as exch. Al and CEC. 

U
 * 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
0 1 2 3 4 5 6 7 

H′ 

Fig. 4. Utility (U*) graph for Shannon index (H 0) as a surrogate for soil
as a habitat of biodiversity function.
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Fig. 5. Screened potential indicators to
estimate the utility (U*) of soil as a habitat of
biodiversity function.

Fig. 6. Comparison of utility graphs (U*; blue circle) and predicted utility (Û ; orange triangle) for soil as a habitat of biodiversity using
(a) ordination by principal component analysis of screened potential indicators (SPI), (b) regression of all potential indicators (PI), and
(c) regression of SPI. Model agreement between utility graphs and predicted utility from (d) principal component analysis of SPI,
(e) regression of all PI, and (f ) regression of SPI.

Table 1. Standardised weights for the utility (U*) of screened
potential indicators identified using the principal component analysis
for the soil function: a habitat for, and of, biodiversity.

Weighting using ordination (PCA)
Out of the six SPI, Table 1 shows the PCA indicators 

selected for the utility of biodiversity, in decreasing order 
of importance: EC, OC, pH, and Mg. For this area, Na and S 
were highly correlated with the selected indicators, hence 
redundant to assess biodiversity. 

Overall, the PCA led to overestimation of low utility scores 
(Fig. 6d) of biodiversity with R2 = 0.35 and RMSE = 0.23. In 
the case of biodiversity, the final index can be obtained by the 
weighted sum of the indicators (Eqn 3): 

Û 
biodiversity = 0.53 × UEC + 0.22 × UOC 

+ 0.17 × UpH + 0.09 × UMg (3) 

Regression by neural networks
The regression case is more straightforward compared 

with the ordination method since the utility is predicted 
directly from the untransformed indicators. Both neural 
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networks, outperformed the PCA method obtaining a 
R2 = 0.92 and RMSE = 0.08 when using all the PI (Fig. 6e) 
and an R2 = 0.6 and RMSE = 0.18 when only using the SPI 
(Fig. 6f ). 

To summarise all of the methods, the regression performed 
better than the ordination by PCA when estimating the utility 
(Fig. 6). The regression results highlight the ability to capture 
complex relationships and interactions which is reflected 
in the better performance. It also highlights the trade-off 
between performance and data requirements, which is a 
factor to consider when implementing the method in the 
future. 

Case study 2. Function: a store and regulator of
nutrients

Identifying soil function/threat/service and
dimension surrogate

In this case study, pH was selected as the surrogate 
indicator to assess the ability of soil to store and regulate 
nutrients under the capacity dimension. It has been well 
researched that pH influences the availability of elements 
within the soil where many essential plant nutrients, contami-
nants, and cycles (i.e. nitrogen cycle, carbon cycle) are 
sensitive to pH changes. We acknowledge that pH can be 
considered both an indicator of capacity and condition 
since it has been extensively used to assess soil quality 
(capacity) and soil health (condition) (Karlen et al. 1992; 
Arshad and Martin 2002; Shukla et al. 2006; Allen et al. 
2011). Though capacity refers to the inherent properties of 
soil, pH may still be employed as an indicator when referring 
to genosoils. With that, our data only included soils under 
native vegetation to represent this. 

Fitting a utility graph for the surrogate
Most elements are plant available within a certain range 

around the pH of 7 while the same elements may become 
unavailable towards both extremes of the pH scale or become 
toxic at those pH extremes. As such, a maximal utility graph 
best describes the utility of pH. A Gaussian model was fitted 
with the parameters of μ = 6.5 and σ = 1. This produced a 
similar utility graph to the scoring function devised by 
Andrews et al. (2002b) (Fig. 7). 

Fitting utility graphs and screening
Upon screening with the F-test, only five models fit the 

population of their respective property well enough to be 
passed on to the next step: total N, exch. Al, EC, total S, and 
CEC (Fig. 8). The following variables were thus not part of 
the proceeding PCA: total OC, P, Cu, Ca, Mn, Ni, K, and Zn, 
as well as exch. Na. 

Weighting using ordination (PCA)
Out of the five SPI, Table 2 shows the PCA indicators 

selected for the utility of nutrient storage, in decreasing 

U
 * 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
2  4  6  8 10  

pH 

Fig. 7. Utility (U*) graph for pH as a surrogate for soil as a store and
regulator of nutrients.

order of importance: S, Al, N, and CEC. For this area, EC is 
not an important factor for biodiversity. 

Overall, the PCA led to overestimation of the utility of 
nutrient storage and regulation at pH below 5.5, underestima-
tion of the utility between 5.5 and 7.5, and overestimation of 
utility above 7 with R2 of 0.39 and RMSE of 0.22 (Fig. 9d). 

Similar to the previous case study, the final index (Eqn 4) 
for nutrient cycling and storage can be obtained by the 
weighted sum of the indicators: 

Û 
nutrient = 0.52 × US + 0.25 × UAl + 0.15 × UN + 0.07 × UCEC 

(4) 

Regression by neural networks
Similar to the previous case study, both neural networks 

outperformed the PCA method, obtaining an R2 of 0.84 and 
RMSE of 0.11 when using all the PI (Fig. 9e) and R2 of 0.56 
and RMSE of 0.19 when only using the SPI (Fig. 9f ). 

Again, lower performance of the PCA ordination compared 
with the regression was observed, and the number of 
predictors playing an important role in the final performance, 
enforcing the importance of a method that captures non-
linearities and interactions. 

Discussion

If a single surrogate was used for each of the roles and 
dimensions of soil security, we would need a maximum of 
115 surrogates to cover the roles and dimensions necessary 
to fully comprehend the security of the soil in an area 
(Evangelista et al. 2023b). Existing and legacy data can be 
used as an initial assessment of soil security and attempt to 
understand as many roles and dimensions as possible, as well 
as the gaps in our understanding. Once an initial assessment is 
done, focused and strategic data collection can be done 
efficiently, avoiding the time and resource allocation on 
dimensions that can already be understood. In the case 
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Fig. 8. Screened potential indicators to
estimate the utility (U*) of soil as a store and
regulator of nutrients.

Table 2. Standardised weights for the utility (U*) of screened
potential indicators identified using the principal component analysis
for the soil function: for store and regulator of nutrients.

Property

where a surrogate is difficult to obtain, such as Shannon’s 
index, the SSAF serves to estimate the surrogate from 
properties that are more easily monitored. In the case of an 
easily monitored surrogate, it can be used to understand 
the drivers of a utility. 

Under the SSAF, the utility graph for a surrogate changes 
with the role and dimension. The utility graph developed is 

currently site-specific and mainly informed by expert 
knowledge. To extend from a site to a broader region, utility 
values will need to be validated and incorporate pedogenic 
and land-use characteristics. The utility of many dimensions 
will look different for each role depending on the land 
management role, and the intention of the capacity dimension 
is to match a land use to a site rather than geoengineering a 
site for a land use. Indeed, geoengineering a site away from 
the capacity of a soil will lower its utility. A central focus of 
research in the future will be on understanding the scope 
under which different utility functions are viable and their 
validation. 

For this study, the transformation of all PI into utility 
graphs was explored based on the utility of the surrogate to 

Fig. 9. Comparison of utility graphs (U*; blue circle) and predicted utility (Û ; orange triangle) for soil as a store and regulator of nutrients
using (a) principal component analysis of screened potential indicators (SPI), (b) regression of all potential indicators (PI), and (c) regression
of SPI. Model agreement between utility graphs and predicted utility from (d) principal component analysis of SPI, (e) regression of all PI,
(f ) and regression of SPI.
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find the minimum dataset that estimates (in the case of 
biodiversity) or explains (in the case of nutrient storage and 
provision) a soil role and dimension. In the case of the 
ordination method, it is necessary to include information 
about the surrogate or direct utility. If the transformation is 
not used, a group of PI will always yield the same result 
(weights and final score), regardless of the role (function, 
service, or threat). In the case of the regression method, the 
transformation is not necessary since we are explicitly 
modelling the relationship between indicators and utility. 

The F-test enables the identification of indicators that 
describes the utility of the surrogates well. In our case study, 
out of the 14 PI, six and five indicators describe the utility of 
the surrogates for biodiversity and nutrient storage and 
provisioning, respectively. Although using all data provided 
the best estimation when using neural networks, the reduc-
tion of indicators led to similar results in certain ranges of 
utilities. Other easily obtainable indicators sensitive to the 
areas where the estimations did not do well need be sought 
out in the future. Although the monitoring of over 115 
surrogates is expected by the SSAF, we hypothesise that the 
indicators required to obtain those surrogates will be much 
smaller and many soil properties will overlap for different 
roles and dimensions. 

In the future, we believe that the multivariate regression 
approach should be preferred rather than the commonly 
used ordination by PCA. Some regression methods have 
already been used in the context of soil health/quality 
(Zornoza et al. 2007; Fine et al. 2017; Zhang et al. 2023) 
but it is important to select a model that can deal with non-
linear relationships between the indicators and the target 
utility, as well as interactions. In terms of interpretability, 
the ordination method is generally attractive because it 
deals with the effect of a single indicator at a time, which 
makes interpretation easier. In our regression example, the 
power of a neural network is greater but also its complexity. 
We show how neural network regression can be used even 
with limited data to provide good estimation of utilities. 
There are methods such as SHAP values (Lundberg and Lee 
2017) that have been used to examine the relationships 
extracted by soil models (Padarian et al. 2020) that we plan 
to explore in future work. 

Conclusions

1. The derivation of utility graphs for soil quality, soil health, 
and soil security assessment (particularly soil capacity, 
condition, and capital) are challenging because a direct 
measure of utility is not available, so some kind of expert 
judgement is generally required. 

2. Surrogates can often be designated and relationships 
between observable surrogates and the utility can be 
constructed by expert knowledge. 

3. Functional relationships can be fit between the surrogate 
utility and the observed PI. 

4. The screening process can eliminate indicators that do not 
have a significant relationship to the surrogate utility. 

5. The neural network regression model provides similar 
estimates of utility to those from the surrogates, in 
comparison to the ordination by PCA method. 

6. The constructed utility graphs and predictive indicators 
can be used as priors in subsequent study areas especially 
when expensive-to-measure indicators are not available. 
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