CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Reproduction, Fertility and Development   
Reproduction, Fertility and Development
  Vertebrate reproductive science and technology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our email Early Alert or RSS feeds for the latest journal papers.

red arrow Submit Article
blank image
Use the online submission system to send us your paper.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow Connect with SRB
blank image
facebook TwitterIcon

Affiliated Societies

RFD is the official journal of the International Embryo Transfer Society and the Society for Reproductive Biology.

Article << Previous     |     Next >>   Contents Vol 22(1)


D. M. Guerra A, A. C. S. Castilho A, M.F. Machado A, B. Berisha B, D. Schams B, C. A. Price C, R. L. Amorim A and J. Buratini Jr A

A São Paulo State University, Botucatu, São Paulo, Brazil;
B Technical University of Munich, Munich, Freising, Germany;
C University of Montreal, St-Hyacinthe, Québec, Canada

Export Citation


Fibroblast growth factor receptor 2 (FGFR2) has been shown to induce luteinization in granulosa cells, luteal angiogenesis, and luteal growth. Alternative splicing of 4 genes give rise to 7 subtypes of fibroblast growth factor receptors (FGFR) with varying affinity for different fibroblast growth factors (FGF). Fibroblast growth factor receptor 2 and FGF18 efficiently activate FGFR3C and FGFR4 and may act in cooperation in tissues expressing these receptors. We aimed to determine mRNA expression patterns for FGF18, FGFR3C, and FGFR4 during bovine luteal development and following induced luteolysis. In addition, we assessed FGF18 localization in the bovine CL. Bovine CL were obtained from abattoir ovaries and classed into 4 stages of development: stage 1 =corpus hemorragicum; stage 2 = developing CL; stage 3 = mature or early functional luteolysis CL; and stage 4 = structural luteolysis. To assess FGF18 and FGFR mRNA expression during induced luteolysis, adult cows (Bos taurus Holstein-Friesians) were injected with the PGF2 analogue cloprostenol (500 mg i.m. Intervet, Unterschleissheim, Germany) during the mid-luteal phase of the cycle (Days 8-12). Corpus luteum were collected by transvaginal ovariectomy at 0, 0.5, 2, 4, 12, 24, 48, and 64 hr (n = 5/time point) after PGF2 injection. Tissue samples were submitted to total RNA extraction. Expression of FGF18, FGFR3C, and 4 mRNA during the bovine CL lifespan and induced luteolysis were measured by real-time RT-PCR with oligo-dT in the RT and bovine-specific primers in the PCR. Expression of cyclophilin was used as internal control. The effect of developmental stage and time post-PGF2 on gene expression was tested by ANOVA, followed by Tukey- Kramer HSD test. Immunohistochemical analysis was performed with a commercial human antibody (anti-FGF18; Santa Cruz Biotechnology, Santa Cruz, CA, USA). Fibroblast growth factor 18, FGFR3C, and FGFR4 mRNA was detected in all 4 developmental stages; FGF18 mRNA abundance was higher in stage 3 (2.89 ± 0.05; mean ± SEM) compared with stages 1 (0.3 ± 0.27), 2 (0.56 ± 1.27), and 4 (0.99 ± 0.32). Fibroblast growth factor 18 and FGFR4 mRNA expression did not significantly change during induced luteolysis. Fibroblast growth factor receptor 3C mRNA abundance peaked 4 h after PGF2 injection and significantly decreased at 24 h post-treatment in comparison with peak levels. Immunohistochemical analysis revealed the presence of FGF18 in small and large luteal cells and in blood vessels. In conclusion, the mRNA expression patterns of FGF18 and its receptors suggest their participation in the control of luteal differentiation, particularly during functional luteolysis. The localization of FGF18 protein to blood vessels suggests it may play a role in the control of angiogenesis in the bovine CL.

Supported by CAPES/FAPESP.

Reproduction, Fertility and Development 22(5305) 264–264   http://dx.doi.org/10.1071/RDv22n1Ab212
Published online: 08 December 2009

Top  Email this page

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016