CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Reproduction, Fertility and Development   
Reproduction, Fertility and Development
  Vertebrate Reproductive Science & Technology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our email Early Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow Connect with SRB
blank image
facebook TwitterIcon

Affiliated Societies

RFD is the official journal of the International Embryo Transfer Society and the Society for Reproductive Biology.

Article << Previous     |     Next >>   Contents Vol 22(1)


M. C. Abraham A, A. Ruete B and Y. C. B. Brandt A

A Swedish University of Agricultural Sciences (SLU), Dept. of Clinical Sciences, Uppsala, Sweden
B SLU, Dept. of Ecology, Uppsala, Sweden

Export Citation


Fertility among cattle breeds can vary. The Swedish Red and White dairy breed (SRB) has been systematically bred for good reproductive traits since 1970 and might therefore have retained a better oocyte quality than other dairy breeds. The aim of this study was to determine if the breed of oocyte donor affects the development of embryos using IVM, IVF, and IVC. Oocyte developmental competence in vitro was compared between the SRB (n = 77 animals), the Swedish Holstein breed (SLB, n = 49), and beef breeds (mixed breeds, n = 97). The oocytes (n = 1380, 18 batches) were aspirated from abattoir-derived ovaries from healthy animals with known identity. Statistical analyses were performed using Student’s t-tests and generalized linear mixed models with random effects. The time of collection in relation to slaughter and time of day, as well as aspiration and the following in vitro procedures, were consistent throughout the experiment. The oocytes were matured, fertilized (frozen semen), and cultured according to conventional protocols without serum. Data are presented as mean ± SEM. The SRB and SLB groups were comparable in age [SRB: 66% cows (over 3 years of age), 27% young cows (calved at least once but not over 3 years of age), and 7% heifers; SLB: 63% cows, 20% young cows, and 17% heifers], carcass classification (scale 1-15, where 15 = highest amount of muscle; SRB: 3.8 ± 0.2, SLB 3.5 ± 0.3), body fat (scale 1-15, where 15 =highest amount of fat; SRB: 8.4 ± 0.4, SLB 8.8 ± 0.5) and kilograms of carcass weight (SRB: 297.3±7.4, SLB: 311.6 ± 9.0). The beef group had a significantly higher mean carcass classification (6.2 ± 0.2) and a different age distribution with a higher proportion of heifers (38% cows, 12% young cows, and 50% heifers), but was comparable in body fat content (8.5 ± 0.4) and kilograms of carcass weight (310.9 ± 7.9). Cleavage rate, number of embryos developed beyond the 2-cell stage by 44 h post-fertilization, and the number of blastocysts developed by Days 7 and 8 were noted. All blastocysts were graded and stained with Hoechst 33 342 and the number of nuclei was determined. Cleavage rate was not different among the breeds (SRB: 71.9 ± 0.03%, SLB: 72.5 ± 0.02%, beef: 73.9 ± 0.03%). The percentage of embryos developed beyond 2-cells (from cleaved) did not differ between the beef and SRB (beef: 65.1 ± 6.1%; SRB: 70.4 ± 4.9%) but SLB was significantly greater than than the other breeds (75.4 ± 4.5%). The percentage of blastocysts developed by Day 8 was significantly higher in the beef (21.1 ± 2.7%) and SRB (23.3 ± 3.5%) breeds compared with the SLB (12.5 ± 2.4%). There was no significant difference in blastocyst grades among breeds (scale 1-4, where 1 = highest grade; SRB: 2.4 ± 0.1, SLB: 2.4 ± 0.2, beef: 2.1 ± 0.2), but the number of nuclei in Day 8 blastocysts was significantly lower in the SLB (SRB: 98.9 ± 7.7, SLB: 79.2 ± 8.7, beef: 101.4 ± 6.9). In conclusion, the breed of origin of the oocytes is an important factors affecting the development during in vitro embryo production in cattle.

Funded by Formas.

Reproduction, Fertility and Development 22(5305) 287–287   http://dx.doi.org/10.1071/RDv22n1Ab260
Published online: 08 December 2009

Top  Email this page

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015