CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Reproduction, Fertility and Development   
Reproduction, Fertility and Development
  Vertebrate reproductive science and technology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our email Early Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow Connect with SRB
blank image
facebook TwitterIcon

Affiliated Societies

RFD is the official journal of the International Embryo Transfer Society and the Society for Reproductive Biology.

Article << Previous     |     Next >>   Contents Vol 22(1)


S. Matoba A, S. Mamo B, E. Gallagher B, A. G. Fahey B, T. Fair B and P. Lonergan B

A National Livestock Breeding Center, Nishigo, Fukushima, Japan;
B University College Dublin, Belfield, Dublin, Ireland

Export Citation


The ability to culture oocytes and embryos in an individually identifiable manner facilitates the study of the relationship between follicle param- eters and oocyte development, in order to identify markers of competent oocytes. The aim of this study was to examine the predictive value of intrafollicular steroid concentrations and granulosa cell transcript abundance on the ability of immature bovine oocytes to develop to the blastocyst stage in vitro. Individual follicles (n = 214, 11 replicates, 49 animals) were dissected from the ovaries of slaughtered animals. Following measure- ment of diameter, follicles were carefully ruptured under a stereomicroscope and the oocyte was recovered and individually processed through maturation, fertilization, and culture on the cell adhesive Cell-Tak (20 oocytes/100 μL; Matoba and Lonergan 2009 Reprod. Fertil. Dev. 21, 160). Cleavage and blastocyst rates were assessed on Days 2 and 9, respectively. Follicular fluid was recovered and stored at -80°C until analysis for concentrations of the steroids estradiol, progesterone, and testosterone by RIA. Granulosa cells were collected from each follicle for analysis of gene expression by quantitative RT-PCR. Primers were designed for 7 target genes (AMH, CYP19A, ESR1, ESR2, FSHR, HSD3B1 and LHCGR) and 2 reference genes (PPIA and H2AZ). Transcript abundance of target genes in granulosa cells associated with embryos that cleaved and developed to the blastocyst stage (competent) and those that cleaved but failed to develop (incompetent) was examined. Mean steroid concentrations were compared by ANOVA and Spearman correlations, and logistical regression were used to test the relationship between follicle size and steroid con- centration and the ability of steroid concentration to predict developmental competence. Gene expression data were analyzed using the delta-delta CT (cycle threshold) method. Values were normalized to the average values of the reference genes and means were compared by the Student’s t-test In total, 79.1% of oocytes cleaved after IVF and 28.3% developed to the blastocyst stage. The mean (±SEM) follicular concentrations of testosterone (62.8 ± 4.8 ng mL-1), progesterone (616.8 ± 31.9 ng mL-1), or estradiol (14.4 ± 2.4 ng mL-1 were not different (P ≥ 0.05) between competent and incompetent oocytes. Follicular diameter was negatively correlated with testosterone, progesterone, testosterone:estradiol, and pro- gesterone:estradiol (P ≤ 0.01) and positively correlated with estradiol (P ≤ 0.01). Logistical regression analysis showed that steroid concentrations or the ratio of steroids were not satisfactory predictors of oocyte competence. Transcript abundance of AMH, ESR1, ESR2, FSHR, and HSD3B1 was significantly higher (P ≤ 0.05) in granulosa cells associated with competent compared with incompetent oocytes. In conclusion, follicular steroid concentrations were not associated with oocyte development. In contrast, granulosa cell gene expression may be a useful predictor of oocyte competence.

Supported by Science Foundation Ireland (07/SRC/B1156).

Reproduction, Fertility and Development 22(5305) 299–299   http://dx.doi.org/10.1071/RDv22n1Ab285
Published online: 08 December 2009

Top  Email this page

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016