CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Reproduction, Fertility and Development   
Reproduction, Fertility and Development
  Vertebrate reproductive science and technology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our email Early Alert or RSS feeds for the latest journal papers.

red arrow Submit Article
blank image
Use the online submission system to send us your paper.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow Connect with SRB
blank image
facebook TwitterIcon

Affiliated Societies

RFD is the official journal of the International Embryo Transfer Society and the Society for Reproductive Biology.

Article << Previous     |     Next >>   Contents Vol 22(1)


D. Paul A, W. Sonnet A, R. Rezsohazy A and I. Donnay A

Université Catholique de Louvain, Louvain-la-neuve, Belgium

Export Citation


HOX genes encode transcription factors known to play a major role in patterning the main body axis of vertebrate embryos from the gastrulation stage onward. A few studies have provided evidence that some HOX genes might be expressed before implantation in mammalian embryos. Translation of maternally inherited transcripts is regulated by modifications of the poly(A) tail length until embryonic genome activation (EGA), occurring during the 4th cell cycle in the bovine. The objective of this work was to establish the expression pattern of various HOX genes and to study the polyadenylation of their transcripts during oocyte maturation and early embryonic development. Pools of 20 bovine oocytes before and after in vitro maturation and 20 in vitro-produced embryos at different stages of development up to the blastocyst stage were collected. Three to 12 pools were used for each stage. RNA was extracted and reverse transcribed (RT) using random hexamers. Quantitative real-time PCR (qPCR) was performed to establish expression profiles of 4 HOX genes: HOXD1, HOXA3, HOXB9, and HOXC9. Two distinct patterns of expression were observed. First, relative amounts of HOXD1, HOXA3, and HOXC9 were lower in morulae and blastocysts than in oocytes. On the other hand, relative expression of HOXB9 increased between the 5 to 8 cell stage and the morula stage (Mann-Whitney, P < 0.05). Those expression patterns were not modified when embryos were cultured in presence of α-amanitin, a RNA polymerase II inhibitor, indicating the maternal origin of the transcripts until EGA. Total amount of mRNAs, estimated by RT-qPCR with random hexamers, was stable for all studied genes during oocyte maturation. The relative amount of polyadenylated GAPDH mRNAs, estimated by RT-qPCR with poly(dT), decreased greatly in mature oocytes compared with immature oocytes indicating massive deadenylation of those transcripts. The relative amount of polyadenylated HOXC9 transcripts decreased slightly but significantly during oocyte maturation (Mann-Whitney, P < 0.05).The relative amount of polyadenylatedm RNAs corresponding to HOXD1, HOXA3, and HOXB9 was stable during oocyte maturation. This indicates that those transcripts escape the default deadenylation pathways followed by housekeeping genes. This experiment has been repeated 3 to 4 times. In conclusion, we confirmed the presence of HOXD1, HOXA3, HOXB9, and HOXC9 transcripts in bovine oocytes and early-stage embryos. Their role during oocyte maturation and the first stages of embryonic development will be investigated through loss of function studies.

This work is funded by the Fonds National de la Recherche Scientifique (Belgium).

Reproduction, Fertility and Development 22(5305) 159–160   http://dx.doi.org/10.1071/RDv22n1Ab3
Published online: 08 December 2009

Top  Email this page

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016