CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Reproduction, Fertility and Development   
Reproduction, Fertility and Development
  Vertebrate Reproductive Science & Technology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
All Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Instructions to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our email Early Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow Connect with SRB
blank image
facebook TwitterIcon

Affiliated Societies

RFD is the official journal of the International Embryo Transfer Society and the Society for Reproductive Biology.



Article << Previous     |     Next >>   Contents Vol 22(1)

326 MICROINJECTIONS OF SMALL INTERFERING RNA AND COMPLEMENTARY RNA TO ELUCIDATE THE INVOLVEMENT OF ENDOGENOUS PHOSPHOLIPASE C ISOFORMS IN BOVINE OOCYTE ACTIVATION DURING FERTILIZATION

B. R. Sessions A, A. H. Bayles A, J. Collier A, K. Perry A, L. S. Whitaker A and K. L. White A

Utah State University, Department of Animal, Dairy, and Veterinary Sciences and Center for Integrated Biosystems, Logan, UT, USA
   

Abstract
Export Citation
Print
  


Abstract

Phospholipase C (PLC) isoforms stimulate the hydrolysis of phosphatidyl inositol (4,5)-bisphosphate (PIP2) to produce diacylglycerol (DAG) and 1,4,5 inositol trisphosphate (IP3), with IP3 regulating the release of calcium (Ca2+) from the endoplasmic reticulum. This release of calcium is essential for oocyte activation, and a sperm-specific PLC isoform, PLCγ;, has been proposed as the primary agent that initiates the activation process. However, the oocyte contains many endogenous PLC isoforms (PLC β, γ, and δ) that could also be involved in regulating or initiating these calcium oscillations downstream of other initiating events. In order to better elucidate the involvement of endogenous PLC isoforms as well as the specific role of the sperm-specific form, small interfering RNA (siRNA) directed against the specific bovine PLC isoforms (PLCζ;, PLCγ1, PLCγ2, PLCδ1, PLCδ3, PLCδ4, PLCβ1, PLCβ3) were microinjected into bovine oocytes, and the subsequent effects on PLC mRNA levels and bovine fertilization were evaluated. Real-time PCR (qPCR) was used to quantify the levels of PLC message present in bovine oocytes at the time of injection (15 h post-maturation) and 6, 10, and 14 h post-injection. The qPCR results indicated a near-complete knockdown of mRNA levels in bovine oocytes 10 h post-injection for the isotypes PLCγ1, PLCγ2, PLCδ3, PLCδ4, PLCβ1, PLCβ3, but only partial knockdown of PLCS 1 mRNA. Oocytes microinjected with PLC siRNA were also fertilized and cultured in vitro according to our standard laboratory procedures (Reed et al. 1996 Theriogenology 45, 439-449). The oocytes microinjected with PLCζ;, PLCδ1, PLCδ3, PLCδ4, PLCβ1, PLCβ3 siRNA resulted in cleavage rates similar to the negative control siRNA, non-injected, and sham-injected treatment groups, whereas bovine oocytes microinjected with PLCγ1 and PLCγ2 siRNA had significantly lower cleavage rates compared with the controls. Additionally, complementary cRNA for each specific PLC isoform was microinjected into bovine oocytes to ascertain each isoform’s ability to induce parthenogenetic activation. Development was observed in oocytes microinjected with a variety of cRNAs, and the activating effects of the cRNA were negligible if the oocytes were microinjected with the corresponding siRNA before microinjection with cRNA. Interestingly, siRNA specific for PLCζ; failed to reduce cleavage when treated bovine oocytes were fertilized. These data illustrate the potential involvement of multiple endogenous PLC isoforms and not just the sperm-specific PLCζ; isoform in bovine oocyte activation during fertilization.

Reproduction, Fertility and Development 22(5305) 319–319   http://dx.doi.org/10.1071/RDv22n1Ab326
Published online: 08 December 2009




 
Top  Email this page
 
   


Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014