CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Reproduction, Fertility and Development   
Reproduction, Fertility and Development
  Vertebrate Reproductive Science & Technology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
All Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Instructions to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our email Early Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow Connect with SRB
blank image
facebook TwitterIcon

Affiliated Societies

RFD is the official journal of the International Embryo Transfer Society and the Society for Reproductive Biology.



Article << Previous     |     Next >>   Contents Vol 22(1)

343 PHOSPHATIDYLINOSITOL 3-KINASE IS INVOLVED IN THE MAINTENANCE OF METAPHASE II ARREST IN PORCINE OOCYTES MATURED IN VITRO

N. Kashiwazaki A, M. Shimada C and J. Ito A

A School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan;
B Graduate School of Veterinary Science, Azabu University, Sagamihara, Kanagawa, Japan;
C Department of Applied Animal Science, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
   

Abstract
Export Citation
Print
  


Abstract

It has been reported that phosphatidylinositol 3-kinase (PI3K)-protein kinase B (PKB) pathway plays a crucial role in the meiotic resumption and progression to the metaphase II (MII) stage of oocytes. However, the role of this pathway in meiotic arrest at the MII stage (cytostatic activity) is not well understood. In this study, the effect of a PI3K inhibitor, LY294002, on the mitogen-activated protein kinase (MAPK) and p34cdc2 kinase activities of matured porcine oocytes was examined. Immature oocytes were collected from ovaries and cultured in modified NCSU37 up to 48 hr. After culture, cumulus cells were removed and oocytes were cultured up to 24 h in medium supplemented with 25 or 50 μM LY294002. Groups of 10 or 20 oocytes were collected at each culture period for in vitro kinase assay of p34cdc2 kinase and MAPK, respectively. Groups of 40 oocytes were also used for detection of PKB phosphorylation by Western blotting. After maturation culture, both the p34cdc2 kinase and MAPK activities in the oocytes were gradually decreased in a time-dependent manner. Although 25 μM LY294002 did not affect either the p34cdc2 kinase or MAPK activities, 50 μM LY294002 suppressed the PKB phosphorylation and slightly decreased MAPK activity, but not the p34cdc2 kinase activity. Next, the effect of 10 μM Ca2+ ionophore which was reported as inducing a transient decrease of p342+ kinase but not MAPK activities, was examined in LY294002-treated oocytes. Pronuclear formation of the oocytes was also evaluated by the aceto-orcein staining. By additional treatment with LY294002 after Ca2+ ionophore, both the MAPK and p34cdc2 kinase activities were decreased in a time-dependent manner, concomitantly with improvement of pronuclear formation. Therefore, we concluded that PI3K is possibly involved in the maintenance of MAPK activity in matured porcine oocytes.


The work was supported in part by Grant-in-Aid for Scientific Research from JSPS (KAKENHI) (21789253) to J.I. This work was also supported in part by the Promotion and Mutual Aid Corporation for Private Schools of Japan through a Grant-in-Aid for Matching Fund Subsidy for Private Universities to J.I. and N.K.

Reproduction, Fertility and Development 22(5305) 328–328   http://dx.doi.org/10.1071/RDv22n1Ab343
Published online: 08 December 2009




 
Top  Email this page
 
   


Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014