CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Reproduction, Fertility and Development   
Reproduction, Fertility and Development
  Vertebrate Reproductive Science & Technology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Instructions to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our email Early Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow Connect with SRB
blank image
facebook TwitterIcon

Affiliated Societies

RFD is the official journal of the International Embryo Transfer Society and the Society for Reproductive Biology.



Article << Previous     |     Next >>   Contents Vol 22(1)

355 INFLUENCE OF NITRIC OXIDE AND CYCLIC GMP SIGNALING PATHWAY ON THE IN VITRO MATURATION OF BOVINE OOCYTES: PRELIMINARY RESULTS

K. R. L. Schwarz A, T. H. C. de Bem A, P. R. L. Pires A, L. G. Mesquita A, L. Remy A and C. L. V. Leal A

Departamento de CiÊncias Básicas, Faculdade de Zootecnia e Engenharia de Alimentos-USP, Pirassununga-SP, Brazil
   

Abstract
Export Citation
Print
  


Abstract

Nitric oxide (NO) is a chemical messenger generated by the activity of the nitric oxide synthase enzyme (NOS) and has been shown to be involved in oocyte maturation. NO is known to act through the guanylate cyclase (GC) signaling pathway, stimulating the production of cyclic guanosine monophosphate (cGMP), which in turn activates protein kinase G (PKG). The objective of the present study was to investigate the involvement of NO and GC/cGMP/PKG pathway on the IVM of bovine oocytes. Slaughterhouse ovaries were transported to the laboratory and oocytes were aspirated from 2 to 8 mm follicles. Oocytes were submitted to IVM (TCM-199+10% fetal calf serum + hormones) for 24 h (38.5°C and 5% CO2 in air) and were assessed for nuclear maturation by acetic-orcein (1%) staining. Maturation rates were analyzed by ANOVA. Five replicates were performed with 20 oocytes per group per replicate. When the oocytes were matured with the NO donor [(0, 10-9, 10-8 and 10-7M S-nitroso-N-acteyl-D,L- penicillamine (SNAP)] germinal vesicle break down (GVBD) rates after 7 h in IVM were 36, 31, 42, and 24%, respectively (P > 0.05). Maturation rates after 24 h IVM ranged from 80 to 85% (P > 0.05). The inhibition of GC [(0, 0.1, 10, and 100 μM 1, H-[1, 2, 4]oxadiazole[4, 3-a]quinoxalon-1-one (ODQ)] and PKG (0, 1, 10, and 100 μM KT5823) did not affect (P > 0.05) the ability of oocytes to form the first polar body (average of 83 and 88%, respectively). When the cGMP-analogue (0, 1, 2, and 4 mM 8-Bromo-cGMP) and the GC-stimulator (0, 5, 10, and 50 μM Protoporphyrin IX) were used during IVM, maturation rates were over 85% in all groups (P > 0.05). To confirm the lack of effect of the inhibitors, another evaluation with higher concentrations of inhibitors in semi-defined IVM medium (TCM-199 + 0.04% BSA) was carried out. Maturation rates were 70 to 75% (P > 0.05) with ODQ and 57 to 76% (P > 0.05) with KT5823. The evaluation with the GC stimulator and the cGMP analogue in semi-defined medium is currently underway. In conclusion, under the conditions studied, the GC/cGMP/PKG signaling pathway is not involved in the nuclear maturation of bovine oocytes.


Supported by FAPESP, Brazil.

Reproduction, Fertility and Development 22(5305) 334–334   http://dx.doi.org/10.1071/RDv22n1Ab355
Published online: 08 December 2009




 
Top  Email this page
 
   


Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014