CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Reproduction, Fertility and Development   
Reproduction, Fertility and Development
  Vertebrate Reproductive Science & Technology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Instructions to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our email Early Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow Connect with SRB
blank image
facebook TwitterIcon

Affiliated Societies

RFD is the official journal of the International Embryo Transfer Society and the Society for Reproductive Biology.



Article << Previous     |     Next >>   Contents Vol 22(1)

388 OPTIMIZATION OF INDUCED PLURIPOTENT STEM CELL GENERATION FROM BOVINE FIBROBLASTS

M. L. Lim A, H. Sumer A, J. Liu A and P. J. Verma A

Monash Institute of Medical Research, Clayton, Victoria, Australia
   

Abstract
Export Citation
Print
  
 


Abstract

Difficulties associated with isolation and culturing bovine embryonic stem (ES) cells has led to the exploration of alternative methods for generating pluripotent stem cells. The viral delivery of reprogramming factors Oct4, Sox2, cMyc, and Klf4 has resulted in generation of induced pluripotent stem cells (iPS) in rodent, human, rhesus monkey, and pig somatic cells. In the current study, we improved the efficiency of retroviral transduction of bovine adult fibroblasts (BAF) for the generation of bovine iPS cells. Bovine adult fibroblasts were transduced with 4 human factors: Oct 4, Sox 2, cMyc, and Klf4. To determine transfection efficiency, pMXs-GFP was used as a reporter. The effect of change in cell density of the Platinum A retroviral packaging cell line (Plat A), cell densities of the target BAF, and infection regimes on the transfection rates was examined. A reduction in Plat A cell density from 8 × 106 to 2 × 106 did not alter transfection rates. Reduced target cell density from 4 × 105 to 4 × 104 (10-fold) improved the transfection rates from 0.31 to 7.06%, P < 0.001 (n = 3). Subjecting the BAF to 2 sequential rounds of viral transduction further improved the transfection rates to 13.88%, P < 0.001 (n = 3). These preliminary results suggest that optimizing the density of target cells can greatly improve transduction outcomes. Following viral induction with the 4 reprogramming factors, putative bovine iPS colonies were observed when the transfection rate was >1%. The putative bovine iPS cells were cultured in alpha-minimal essential medium supplemented with 20% FCS and 10 ng mL-1 human leukemia inhibitory factor. These putative bovine iPS colonies had mouse ES-like morphology, were multilayered, and had high nucleus-to-cytoplasmic ratio. They stained positive for alkaline phosphatase activity. The colonies were manually passaged onto mitomycin C-inactivated mouse embryonic fibroblasts every 5 to 7 days but could only be expanded for a limited number of passages. Other strategies are currently being explored to improve stable reprogramming of BAF such as epigenetic modification of cells, lentivirus-mediated transduction, and investigation of media suitable to maintain putative bovine iPS colonies for further characterization including RT-PCR or immunohistochemical detection for pluripotent markers and in vivo differentiation ability.


Acknowledgments are given to Dairy Australia.

Reproduction, Fertility and Development 22(5305) 350–351   http://dx.doi.org/10.1071/RDv22n1Ab388
Published online: 08 December 2009




 
return to top of pageTop  email this page Email this page
 
   


Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014