CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Reproduction, Fertility and Development   
Reproduction, Fertility and Development
  Vertebrate reproductive science and technology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our email Early Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow Connect with SRB
blank image
facebook TwitterIcon

Affiliated Societies

RFD is the official journal of the International Embryo Transfer Society and the Society for Reproductive Biology.

Article << Previous     |     Next >>   Contents Vol 22(1)


S. Waghmare A and B. Mir A

Indiana University, Indianapolis, IN, USA

Export Citation


Gene targeting in primary somatic cells is inefficient compared with embryonic stem cells. This is because of a slow rate of cell proliferation, fewer cells in S-phase at a given time point under normal culture conditions, and low rate of homologous recombination. Homologous recombination occurs mainly in late S-phase and increase in gene targeting efficiency has been reported in S-phase synchronized cells in bovine and rhesus macaque fetal fibroblasts. In this study we tested several growth factors: platelet-derived growth factor (PDGF), tumor necrosis factor a (TNFα), epidermal growth factor (EGF), fibroblast growth factor (FGF), transforming growth factor β1 (TGFβ1), insulin-like growth factor 1 (ILGF-1) and insulin-like growth factor II (ILGF-II) individually and in various combinations to see the effect on cell proliferation rate. Each experimental set consisted of 3 replicates. TGFβ1-, ILGF1-, ILGFII-, and FGF-treated cells grew very slowly compared with untreated cells. However, a combination of 3 growth factors: PDGF (15 ng mL-1), EGF (50 ng mL-1) and TNFa (100 pg mL-1), herein referred to as the cocktail, accelerated cell proliferation rate and reduced cell cycle length on average from 24.5 ± 0.2 to 20.4 ± 0.5 h with no significant change in number of cells in S-phase. Further, cells grown in the presence of the cocktail showed changes in morphology. The cells became spindle-shaped and occupied less surface area per cell compared with untreated cells. Importantly, cocktail-treated cells maintained a normal karyotype without any chromosomal abnormality. Thymidine has been used successfully to block various cell types in S-phase but it failed to synchronize these cells in S-phase in the concentration range of 2 to 10 mM for 24 to 48 h. However, serum starvation (0.2% fetal bovine serum) for 48 h blocked the cell proliferation rate effectively and synchronized cells in G0 phase (80-82% cells). After releasing from the block, cells were grown in the absence or presence of cocktail and cell cycle analysis was done at different time points by flow cytometry. Each time point was repeated 3 times. We observed the maximum number of cells in S-phase at 22 to 23 h (61.33% ± 7.77 in cocktail-treated cells v. 41.7% ± 3.28 in untreated cells). In summary, the cocktail-treated cells showed changes in cell morphology, higher proliferation rate, reduction in cell cycle length by 16.7%, and maximum percentage of cells in S-phase following serum starvation but maintained normal karyotypes. This high proliferation rate, reduction in cell cycle length, and maximum number of cells in S-phase should be very helpful in increasing the efficiency of gene-targeting in pig fetal fibroblasts.

Reproduction, Fertility and Development 22(5305) 374–375   http://dx.doi.org/10.1071/RDv22n1Ab435
Published online: 08 December 2009

Top  Email this page

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016