CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Board
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


 Just Accepted

This article has been peer reviewed and accepted for publication. It is in production and has not been edited, so may differ from the final published form.

Rhizobium-induced elevation in xylem cytokinin delivery in pigeonpea induces changes in shoot development and leaf physiology

Jean Yong, David Letham, Suan Chin Wong, Graham Farquhar


Inoculation with Rhizobium strain IC3342 induces in pigeonpea (Cajanus cajan (L) Millsp.) a leaf curl syndrome and elevated cytokinin levels in the xylem sap. High N nutrition was found to inhibit onset of the syndrome which could then be induced by N-free nutrient after development of 7 trifoliate leaves. This provided a new system to study the role of xylem cytokinin in shoot development and yielded plants suitable for determining the rate of delivery of xylem cytokinin to the shoot which for IC3342-inoculated plants was found to be three times that of control plants. Relative to leaves of control plants, the non-curled leaves of these IC3342 plants exhibited higher nitrogen and chlorophyll content and greater photosynthetic rate and stomatal conductance. Induction of the syndrome increased leaf thickness in developing leaves but not in expanded leaves already formed. Diameter of stems and number of laterals were also increased markedly by IC3342 inoculation which in addition induced leaf hyponasty. Exogenous cytokinins when applied directly to control leaves induced leaf curl and increased leaf thickness. The present studies are discussed in relation to the role of xylem cytokinins in plant development and especially the release of lateral buds from apical dominance.

FP14066  Accepted 11 June 2014
© CSIRO 2014

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2014