CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Marine & Freshwater Research   
Marine & Freshwater Research
Journal Banner
  Advances in the Aquatic Sciences
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Instructions to Authors
Submit Article
Open Access
For Referees
General Information
Review Article
Referee Guidelines
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

 Just Accepted

This article has been peer reviewed and accepted for publication. It is in production and has not been edited, so may differ from the final published form.


The influence of concrete on the geochemical qualities of urban streams.

Carl Tippler, Ian Wright, Peter Davies, Alison Hanlon

Abstract

The geochemical signature of freshwater streams can be used to determine the extent and nature of modification to stream water geochemistry due to urban development. This approach used the Gibbs (1970) diagram as a model for evaluation of changes to ionic composition linked to urban development. In this multi-year study, the geochemistry of 21 waterways in the Georges River catchment, Sydney, were monitored and compared with the level of urban development as measured by sub-catchment imperviousness and directly connected imperviousness. The results reflect a strong relationship between the intensity of sub-catchment urban development and stream geochemistry. All major geochemical attributes increased with escalating levels of urban development. The largest increase was for bicarbonate which increased 18 times, from a mean of 6.4 mgL-1 at non-urban streams to a mean of 118 mgL-1 at urban streams. Similarly mean concentrations of calcium increased by 14 times (from 2 to 27.9 mgL-1). Mean salinity was enriched in the most urban streams, compared to non-urban streams, by more than 6 times. We attribute this, in part, to the influence of urban geology, notably concrete stormwater infrastructure. Changes in stream geochemistry due to urban development are an important element of the urban stream syndrome.

MF13164  Accepted 18 February 2014
 
© CSIRO 2014



Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014