CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Marine & Freshwater Research   
Marine & Freshwater Research
Journal Banner
  Advances in the Aquatic Sciences
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Instructions to Authors
Submit Article
Open Access
For Referees
General Information
Review an Article
Referee Guidelines
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

 Just Accepted

This article has been peer reviewed and accepted for publication. It is in production and has not been edited, so may differ from the final published form.


Using biomimetic loggers to measure interspecific and microhabitat variation in body temperatures of rocky intertidal invertebrates

Justin Lathlean, David Ayre, Ross Coleman, Todd Minchinton

Abstract

Until recently marine scientists have relied heavily on satellite sea surface temperatures and terrestrial weather stations as indicators of the way in which the thermal environment, and hence the body temperatures of organisms, vary over spatial and temporal scales. We designed biomimetic temperature loggers for three species of rocky intertidal invertebrates to determine whether mimic body temperatures differ from the external environment and among species and microhabitats. For all three species, microhabitat temperatures were considerably higher than the body temperatures, with differences as great as 11.1°C on horizontal rocky substrata. Across microhabitats daily maximal temperatures of the limpet Cellana tramoserica were on average 2.1°C and 3.1°C higher than body temperatures of the whelk Dicathais orbita and the barnacle Tesseropora rosea, respectively. Amongst microhabitat variation in each species’ temperature was equally as variable as differences among species within microhabitats. Daily maximal body temperatures of barnacles placed on southerly facing vertical rock surfaces were on average 2.4°C cooler than those on horizontal rock. Likewise, daily maximal body temperatures of whelks were on average 3.1°C cooler within shallow rock pools than on horizontal rock. Our results provide new evidence that unique thermal properties and microhabitat preferences may be important determinants of species’ capacity to cope with climate change.

MF13287  Accepted 13 March 2014
 
© CSIRO 2014



Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014