CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Marine & Freshwater Research   
Marine & Freshwater Research
Journal Banner
  Advances in the Aquatic Sciences
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Instructions to Authors
Submit Article
Open Access
For Referees
General Information
Review Article
Referee Guidelines
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

 Just Accepted

This article has been peer reviewed and accepted for publication. It is in production and has not been edited, so may differ from the final published form.


Ecological response of Eucalyptus camaldulensis (River Red Gum) to extended drought and flooding along the River Murray, South Australia, 1997-2011 and implications for environmental flow management

Tanya Doody, Simon Benger, Jodie Pritchard, Ian Overton

Abstract

Riparian forest and woodlands of the lower River Murray floodplain are exhibiting deteriorating health as a result of anthropogenic alterations to flow regimes and south-eastern Australia’s long-term ‘Millennium Drought’ from 1997 to 2009. Extensive flooding in 2010/2011 ended the drought, providing an opportunity to monitor ecological floodplain recovery. The relationship between flooding and lateral recharge and condition of the dominant riparian tree species, Eucalyptus camaldulensis was determined between 2007 and 2011 using the Landsat (LTM5) Normalised Difference Vegetation Index (NDVI). Linking the river hydrograph with the River Murray Floodplain Inundation Model (RiM-FIM) allowed exploration of the relationship between inundation duration and E. camaldulensis water requirements. Results indicate lateral bank recharge is an important mechanism in the maintenance of vegetation condition along the River Murray. Higher in-channel irrigation water delivery during summer months was identified as critical to tree survival adjacent to the channel during the drought. The research suggests that weir pool manipulation to create in-channel flood pulses will aid E. camaldulensis maintenance. Furthermore, release of environmental flows once every 3 to 5 years to create bank-full flow or preferably overbank flows, will increase hydrological connectivity between river banks, wetlands and riparian zones, providing positive ecological benefits to E. camaldulensis and other floodplain and aquatic ecological assets.

MF13247  Accepted 16 March 2014
 
© CSIRO 2014



Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014