International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire

Modelling the effects of landscape fuel treatments on fire growth and behaviour in a Mediterranean landscape (eastern Spain)

Beatriz Duguy A C , José Antonio Alloza A , Achim Röder B , Ramón Vallejo A and Francisco Pastor A
+ Author Affiliations
- Author Affiliations

A Centro de Estudios Ambientales del Mediterráneo (CEAM), Charles Darwin 14, E-46980 Paterna, Valencia, Spain.

B University of Trier, Remote Sensing Department, Campus II, D-54286 Trier, Germany.

C Corresponding author. Email:

International Journal of Wildland Fire 16(5) 619-632
Submitted: 29 June 2006  Accepted: 11 April 2007   Published: 26 October 2007


The number of large fires increased in the 1970s in the Valencia region (eastern Spain), as in most northern Mediterranean countries, owing to the fuel accumulation that affected large areas as a consequence of an intensive land abandonment. The Ayora site (Valencia province) was affected by a large fire in July 1979. We parameterised the fire growth model FARSITE for the 1979 fire conditions using remote sensing-derived fuel cartography. We simulated different fuel scenarios to study the interactions between fuel spatial distribution and fire characteristics (area burned, rate of spread and fireline intensity). We then tested the effectiveness of several firebreak networks on fire spread control. Simulations showed that fire propagation and behaviour were greatly influenced by fuel spatial distribution. The fragmentation of large dense shrubland areas through the introduction of wooded patches strongly reduced fire size, generally slowing fire and limiting fireline intensity. Both the introduction of forest corridors connecting woodlands and the promotion of complex shapes for wooded patches decreased the area burned. Firebreak networks were always very effective in reducing fire size and their effect was enhanced in appropriate fuel-altered scenarios. Most firebreak alternatives, however, did not reduce either rate of fire spread or fireline intensity.

Additional keywords: FARSITE, fire modelling, firebreak network, fuel spatial distribution, landscape diversity, resilience to fire, spatial technologies.


The present work was carried out within the scope of the project ‘Geomatics in the Assessment and Sustainable Management of Mediterranean Rangelands-GEORANGE’ (EVK2-CT2000–00091). CEAM is funded by the Valencia Government (Generalitat Valenciana) and the Fundación Bancaixa. We thank Jorge Suárez (Conselleria Territori i Habitatge, Valencia Government) for providing us with valuable information about the FARSITE-required crown fuel parameters. We are also grateful to Mark A. Finney, developer of the FARSITE model, for his kindness in discussing with us some aspects of the model. We thank several members of the Catalan Agency for Forest Management Actions-GRAF for sharing with us information about their calibrations of FARSITE in several areas of Catalonia.


Agee JK, Bahro B, Finney MA, Omi PN, Sapsis DB, Skinner CN, van Wagtendonk JW , Weatherspoon CP (2000) The use of shaded fuelbreaks in landscape fire management. Forest Ecology and Management  127, 55–66.
CrossRef |

Albini FA, Anderson EB (1982) Predicting fire behavior in US Mediterranean ecosystems. In ‘Proceedings of the Symposium on Dynamics and Management of Mediterranean-type ecosystems’. USDA Forest Service, General Technical Report PSW-58. pp. 483–489. (Berkeley, CA)

Anderson HE (1982) Aids to determining fuel models for estimating fire behaviour. USDA Forest Service, Intermountain Forest and Range Experiment Station, General Technical Report INT-122. (Ogden, UT)

Andrews PL , Queen LP (2001) Fire modelling and information system technology. International Journal of Wildland Fire  10, 343–352.
CrossRef |

Andrews PL, Rothermel RC (1982) Charts for interpreting wildland fire behavior characteristics. USDA Forest Service, Intermountain Forest and Range Experiment Station, General Technical Report INT-131. (Ogden, UT)

Arca B, Duce P, Laconi M, Pellizzaro G, Salis M, Spano D, (2007) Evaluation of FARSITE simulator in Mediterranean maquis. International Journal of Wildland Fire 16, 563–572. doi:10.1071/WF06070

Burriel JA, Gracia C, Ibàñez JJ, Mata T, Vayreda J (2000–2004) Inventari Ecològic i Forestal de Catalunya. (CREAF: Bellaterra, Barcelona)

Corona P, Zeide B (1999) Contested issues in forest ecosystem management. In ‘Perspectives in Ecology’. (Ed. A Farina) pp. 315–322. (Backhuys: Leiden, the Netherlands)

Debano LF, Neary DG, Folliott PF (1998) ‘Fire’s Effects on Ecosystems.’ (Wiley: New York)

Duguy B (2003) Interacción de la historia de usos del suelo y el fuego en condiciones Mediterráneas. Respuesta de los ecosistemas y estructura del paisaje. PhD Thesis. Universidad de Alicante.

FAO-UNESCO (2003) The Digital Soil Map of the World (DSMW). Version 3.6. (CD-ROM) (FAO: Rome)

Finney MA (1994) Modeling the spread and behaviour of prescribed natural fires. In ‘Proceedings of the 12th Conference on Fire and Forest Meteorology’. 26–28 October 1993, Jekyll Island, GE, USA. (Eds JD Cohen, JM Saveland, DD Wade) pp. 138–143. (Society of American Foresters, American Meteorological Society: Bethesda, MD)

Finney MA (1998) FARSITE: Fire Area Simulator – model development and evaluation. USDA Forest Service, Research Paper RMRS-RP-4. (Fort Collins, CO)

Finney MA (2001) Design of regular landscape fuel treatment patterns for modifying fire growth and behavior. Forest Science  47, 219–228.

Finney MA, Ryan KC (1995) Use of the FARSITE fire growth model for fire prediction in the US national parks. In ‘International Emergency Management and Engineering Conference’. 9–12 May 1995, Nice, France. (Eds JD Sullivan, J Luc Wybo, L Buisson) pp. 183–189. (TIEMES: Dallas, TX)

Forman RTT (1995) Some general principles of landscape and regional ecology. Landscape Ecology  10, 133–142.
CrossRef |

Forman RTT, Collinge SK (1996) The ‘spatial solution’ to conserving biodiversity in landscapes and regions. In ‘Conservation of Faunal Diversity in Forested Landscapes’. (Eds RM DeGraaf, RI Miller) pp. 537–568. (Chapman and Hall: London)

Gollberg GE, Neuenschwander LF , Ryan KC (2001) Introduction: integrating spatial technologies and ecological principles for a new age in fire management. International Journal of Wildland Fire  10, 263–265.
CrossRef |

Green LR (1977) Fuelbreaks and other fuel modification for wildland fire control. In ‘USDA Agricultural Handbook, No 499’. (USDA: Washington DC)

GVA. Conselleria d’Agricultura i Mig Ambient (1997) Mapa de suelos de la Comunidad Valenciana. 1 : 100 000. Ayora (768). Proyecto LUCDEME (MAPA). (Generalitat Valenciana: Valencia)

Hargrove WW, Gardner RH, Turner MG, Romme WH , Despain DG (2000) Simulating fire patterns in heterogeneous landscapes. Ecological Modeling  135, 243–263.
CrossRef |

Knight DH (1987) Parasites, lightning and the vegetation mosaic in wilderness landscapes. In ‘Landscape Heterogeneity and Disturbance. Ecological Studies, 64’. (Ed. MG Turner) pp. 59–84. (Springer-Verlag: New York)

Lloret F, Calvo E, Pons X , Díaz-Delgado R (2002) Wildfires and landscape patterns in the Eastern Iberian Peninsula. Landscape Ecology  17, 745–759.
CrossRef |

MAPA-ICONA (1990) Clave fotográfica para la identificación de modelos de combustible. (Ministerio de Agricultura, Pesca y Alimentación-ICONA: Madrid)

MAPA (1993) Dirección General de Conservación de la Naturaleza. Mapa forestal de España (1 : 200 000). (Ministerio de Agricultura, Pesca y Alimentación: Madrid)

Molina DM, Castellnou M (2002) Wildland fuel management in Catalonia (NE Spain). In ‘Actes de la 1ère Conférence Internationale sur les Stratégies de Prévention des Incendies dans les Forêts d’Europe du Sud’. 31 January–2 February 2002, Bordeaux, France. (Préventique: Bordeaux)

Montero de Burgos JL , Alcanda P (1993) Reforestación y biodiversidad. Líneas metodológicas de planificación y restauración forestal. Montes  33, 57–76.

Moreno JM, Oechel WC (1994) Fire intensity as a determinant factor of postfire plant recovery in southern California chaparral. In ‘The Role of Fire in Mediterranean-Type Ecosystems. Ecological Studies 107’. (Eds JM Moreno, WC Oechel) pp. 26–45. (Springer-Verlag: New York)

Morvan N, Burel F, Baudry J, Tréhen P, Bellido A, Delettre YR , Cluzeau D (1995) Landscape and fire in Brittany heathlands. Landscape and Urban Planning  31, 81–88.
CrossRef |

Minnich RA (1983) Fire mosaics in southern California and northern Baja California. Science  219, 1287–1294.
CrossRef | PubMed |

Pielke RA, Walko RL, Eastman JL, Lyons WA, Stocker RA, Uliasz M , Tremback CJ (1992) Recent achievements in the meteorological modeling of local weather and air quality. Trends in Atmospheric Science  1, 287–307.

Rivas Martínez S (1987) ‘Mapa de series de vegetación de España.’ (ICONA: Madrid, España)

Röder A, Bärisch S, Hill J, Duguy B, Alloza JA, Vallejo R (2005) An interpretation framework for fire events and postfire dynamics in Ayora/Spain using time-series of Landsat-TM and -MSS data. In ‘New Strategies for European Remote Sensing. Proceedings of the 24th Symposium of the European Association of Remote Sensing Laboratories’. 25–27 May 2004, Dubrovnik, Croatia. (Ed. M Oluic) pp. 51–60. (Millpress: Rotterdam, the Netherlands)

Röder A, Hill J, Duguy B, Alloza JA , Vallejo R (in press) Using long time series of Landsat data to monitor fire events and post-fire dynamics and identify driving factors. A case study in the Ayora region (eastern Spain). Remote Sensing of Environment. ,

Rothermel RC (1983) How to predict the spread and intensity of forest and range fires. USDA Forest Service, Intermountain Forest and Range Experimental Station, GTR INT-143, pp. 59–62. (Missoula, MT)

Smith MO, Ustin SL, Adams JB , Gillespie AR (1990) Vegetation in deserts: I. A regional measure of abundance from multispectral images. Remote Sensing of Environment  31, 1–26.
CrossRef |

Stephens SL (1998) Evaluation of the effects of silvicultural fuels treatments on potential fire behaviour in Sierra Nevada mixed-conifer stands. Forest Ecology and Management  105, 21–35.
CrossRef |

Stratton RD (2004) Assessing the effectiveness of landscape fuel treatments on fire growth and behavior. Journal of Forestry  102, 32–40.

Stubbs T (2005) Adjective ratings for fire behavior. Available at [Verified 14 June 2005]

Turner MG (1989) Landscape ecology: the effect of pattern on process. Annual Review of Ecology and Systematics  20, 171–197.
CrossRef |

Turner MG , Romme WH (1994) Landscape dynamics in crown fire ecosystems. Landscape Ecology  9, 59–77.
CrossRef |

Turner MG, Hargrove WW, Gardner RH , Romme WH (1994) Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. Journal of Vegetation Science  5, 731–742.
CrossRef |

Vallejo VR, Alloza JA (1998) The restoration of burned lands: the case of eastern Spain. In ‘Large Forest Fires’. (Ed. JM Moreno) pp. 91–108. (Backhuys: Leiden, the Netherlands)

Van Wagner CE (1977) Conditions for the start and spread of crown fire. Canadian Journal of Forest Research  7, 23–24.

Van Wagtendonk JW (1996) ‘Use of a Deterministic Fire Growth Model to Test Fuel Treatments. Sierra Nevada Ecosystem Project, Final Report to Congress, Vol. II. Assessments and Scientific Basis for Management Options.’ Centers for Water and Wildland Resources, University of California, Davis, CA, pp. 1155–1166. (Backhuys: Leiden, the Netherlands)

Velasco L (2000) Planificación de redes de áreas cortafuegos. In ‘La Defensa contra Incendios Forestales: Fundamentos y Experiencias’. (Ed. R Veléz) (McGraw Hill: Madrid)

Vélez R (1990) Algunas observaciones para una selvicultura preventiva de incendios forestales. Ecología  1, 561–571.

Export Citation Cited By (43)