Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Spot fires: fuel bed flammability and capability of firebrands to ignite fuel beds

Anne Ganteaume A D , Corinne Lampin-Maillet A , Mercedes Guijarro B , Carmen Hernando B , Marielle Jappiot A , Teresa Fonturbel C , Pedro Pérez-Gorostiaga C and José A. Vega C
+ Author Affiliations
- Author Affiliations

A Cemagref UR EMAX, 3275 Route de Cézanne, CS 40061, F-13182 Aix-en-Provence, France.

B Centro de Investigación Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra de La Coruña km 7, E-28040 Madrid, Spain.

C Departamento de Protección Ambiental, Centro de Investigación Forestal de Lourizán, Xunta de Galicia, E-36080 Pontevedra, Spain.

D Corresponding author. Email: anne.ganteaume@cemagref.fr

International Journal of Wildland Fire 18(8) 951-969 https://doi.org/10.1071/WF07111
Submitted: 6 August 2007  Accepted: 24 March 2009   Published: 9 December 2009

Abstract

A series of tests were conducted under laboratory conditions to assess, first, the capacity of several fuel beds to be ignited by firebrands and to sustain a fire and, second, the capability of different types of firebrands to ignite fuel beds. Fuel beds and firebrands were selected among the most common in southern Europe. Regarding fuel bed flammability, results show that grasses are more flammable than litter and, among litters, Pinus species are the most flammable. The increase in bulk density and fuel moisture content involves an increase in the time to ignition, and a decrease in the other flammability parameters. The capability of firebrands to ignite fuel beds is higher when the firebrands drop in the flaming phase and with no air flow than in glowing phase with air flow. Logistic regression models to predict fuel bed ignition probability were developed. As a whole, results show a relationship between ignition probability of fuel bed and type or weight of firebrands. Pinus pinaster cone scale, P. halepensis cone scale, and Eucalyptus globulus leaf and bark can have ignition probabilities at least twice higher than pine bark when falling while in flaming combustion.

Additional keywords: ember, ignition probability, spotting, wildfire.


Acknowledgements

This research was funded by the European Commission, Directorate General XII for Science, Research and Development, IV Environment and Climate Framework Research and Development Program SALTUS ENV98-CT98–0701.


References


Albini FA (1979) Spot fire distance from burning trees: a predictive model. USDA Forest Service, Intermountain Forest and Range Experiment Station, General Technical Report INT-56. (Odgen, UT)

Albini FA (1981) Spot fire distance from isolated sources – extensions of a predictive model. USDA Forest Service, Intermountain Forest and Range Experiment Station, Research Note INT-309. (Odgen, UT)

Albini FA (1983) Potential spotting distance from wind-driven surface fires. USDA Forest Service, Intermountain Forest and Range Experiment Station, Research Paper INT-309. (Odgen, UT)

Anderson HE (1970) Forest fuel ignitability. Fire Technology  6(4), 312–319.
Crossref | GoogleScholarGoogle Scholar | CAS | Babrauskas V (2002) ‘Heat Release Rates. The SFPE Handbook of Fire Protection Engineering.’ (National Fire Protection Association: Quincy, MA)

Babrauskas V (2003) ‘Ignition Handbook.’ (Fire Science Publishers: Issaquah, WA)

Baker E (2005) Burning characteristics of individual Douglas-fir trees in the wildland–urban interface. MSc thesis, Worcester Polytechnic Institute, UK.

Blackmarr WH (1972) Moisture content influences ignitability of slash pine litter. USDA Forest Service, Southeastern Forest Experiment Station, Research Note RN-SE-173. (Asheville, NC)

Burgan RE, Rothermel RC (1984) BEHAVE: fire behaviour prediction and fuel modelling system: FUEL subsystem. USDA Forest Service, Intermountain Forest and Range Experiment Station, General Technical Report GTR-INT-167. (Ogden, UT)

Delaveaud P (1981) Le feu, outil sylvicole? Utilisation pratique des données de combustibilité. Mémoire de 3éme année, Ecole Nationale des Ingénieurs des Travaux des Eaux et Forêts, Institut National de la Recherche Agronomique, Station de Sylviculture Méditerranéenne. (Avignon, France)

Ellis PF (2000) The aerodynamic and combustion characteristics of eucalypt bark – a firebrand study. PhD thesis, University of Canberra, ACT.

Ferreira AD (1988) Igniçao de combustiveis finos por fosforos. In ‘Actas das Jornadas Científicas sobre Incêndios Florestais’, 23–25 November 1988, University of Coimbra, Coimbra, Portugal.

Finney MA (1998) FARSITE: fire area simulator – model development and evaluation. USDA Forest Service, Rocky Mountain Research Station, Research Paper RP-RMRS-004. (Ogden, UT)

Fonda RW, Belager LA , Burley LL (1998) Burning characteristics of western conifer needles. Northwest Science  72(1), 1–9.
Gardner RH, Romme WH, Turner MG (1999) Predicting forest fire effects at landscape scales. In ‘Spatial Modelling of Forest Landscape Change: Approaches and Applications’. (Eds DJ Mladenoff, WL Baker) pp. 163–185. (Cambridge University Press: Cambridge, UK)

Guijarro M, Hernando C (2000) Comportamiento del fuego en la hojarasca de Pinus pinea L. In ‘Actas del 1er Simposio del Pino Piñonero (Pinus pinea L.)’, 22–24 February 2000, Valladolid, Spain. Vol. 1, pp. 263–268.

Hargrove WW, Gardner RH, Turner MG, Romme WH , Despain DG (2000) Simulating fire patterns in heterogeneous landscapes. Ecological Modelling  135(2–3), 243–263.
Crossref | GoogleScholarGoogle Scholar | Hernando C (1989) Inflamabilidad y poder calorífico de especies del sotobosque (Zona Centro, Levante y Andalucía). PhD thesis, Universidad Politécnica de Madrid.

Leone V, Sarracín A, Trabaud L, Velez R (2000) Fire prevention and management policies in west Mediterranean pine forest. In ‘Ecology, Biogeography and Management of Pinus halepensis and P. brutia Forest Ecosystems in the Mediterranean Basin’. (Backhuys Publishers: Leiden, the Netherlands)

Lin CC (1999) Modeling probatility of ignition in Taiwan red pine forests. Taiwan Journal of Forest Science  14(3), 339–344.
Manzello SL, Maranghides A, Mell WE, Cleary TG, Yang JC (2006a) Firebrand production from burning vegetation. In ‘V International Conference on Forest Fire Research’, 27–30 November 2006, Figueira da Foz, Portugal. (Ed. DX Viegas) (University of Coimbra: Coimbra, Portugal)

Manzello SL, Cleary TG, Shields JR , Yang JC (2006b) On the ignition of fuel beds by firebrands. Fire and Materials  30, 77–87.
Crossref | GoogleScholarGoogle Scholar | CAS | Martin RE, Gordon DA, Gutierrez M, Lee D, Molina DM, Schroeder RA, Sapsis DB, Stephens S (1994) Assessing the flammability of domestic and wildland vegetation. In ‘Proceedings of the 2nd International Fire and Forest Meteorology Conference’, Jekyll Island, GA, pp. 130–137.

Mendes-Lopes JMC, Ventura JMP, Amaral JMP (1998) Rate of spread and flame characteristics in a bed of pine needles. In ‘Proceedings of the III International Conference on Forest Fire Research – 14th Conference on Fire and Forest Meteorology’, 16–20 November 1998, Luso-Coimbra, Portugal. (Ed. DX Viegas) Vol. I, pp. 497–511.

Plucinski MP , Anderson WR (2008) Laboratory determination of factors influencing successful point ignition in the litter layer of shrubland vegetation. International Journal of Wildland Fire  17, 628–637.
Crossref | GoogleScholarGoogle Scholar | Rothermel RC (1983) How to predict the spread and intensity of forest and range fires. USDA Forest Service, Intermountain Forest and Range Experiment Station, General Technical Report INT-143. (Odgen, UT)

Rothermel RC, Anderson HE (1966) Fire spread characteristics determined in the laboratory. USDA Forest Service, Intermountain Forest and Range Experiment Station, Research Paper INT-30. (Odgen, UT)

SALTUS (2001) Fire spotting: mechanism analysis and modelling. EU Project ENV98–CT98–0701. Final report ‘Probabilistic Model’.

Tarifa CS, del Notario PP, Moreno FG (1965) On the flight paths and lifetimes of burning particles of wood. In ‘Proceedings of the Combustion Institute’. Vol. 10, pp. 1021–1037.

Tarifa CS, del Notario PP, Moreno FG (1967) Transport and combustion of fire brands. Final report of Grants FG-SP-114 and FG-SP-146, Vol. 2. Instituto Nacional de Técnica Aeroespacial Esteban Terradas. (Madrid, Spain)

Trabaud L (1976) Inflammabilité et combustibilité des principales espèces des garrigues de la règion méditerranèenne. Oecologia Plantarum  11(2), 117–136.
Valette JC (1988) Inflammabilité, teneur en eau et turgescence relative de quatre espèces forestières méditerranéennes. In ‘Documentos del Seminario sobre Métodos y Equipos para la Prevención de Incendios Forestales’, Instituto Nacional para la Conservación de la Naturaleza, MAPA, Madrid, pp. 98–107. (ICONA)

Valette JC, Guijarro M, Maréchal J, Dupuy JL (1994) Influence of slope and fuel load on fire behaviour in pine needles fuel beds. In ‘Proceedings of the 2nd International Conference on Forest Fire Research’, 21–24 November 1994. Coimbra, Portugal. (Ed. DX Viegas) Vol. I, pp. 319–329.

Vega JA, Cuiñas P, Bará S, Fonturbel MT, De Los Santos JA, Rozados MJ, Alonso M, Beloso MC, Calvo E (1993) Forest fire prevention through prescribed burning: experimental study on fire effects on litter and soil. Centro de Investigación Forestal, contract no. CE/STEP-CT-90–0087. Final report. (Lourizán, Pontevedra, Spain)

Ventura JMP, Fernandes EC, Durao DFG (1988) Combustão de residuos florestais. Alguns resultados. In ‘Actas das Jornadas Científicas sobre Incêndios Florestais’, 23–25 November 1988, Coimbra, Portugal.

Viegas DX, Neto LPC (1990) Rate of spread of a flame at varying wind conditions. In ‘Proceedings of the 1st International Conference on Forest Fire Research’, 19–22 November 1990, Coimbra, Portugal. (Ed. DX Viegas) Vol. B.19, pp. 1–12.

Viney NR , Hatton TJ (1989) Assessment of existing fine fuel moisture models applied to eucalyptus litter. Australian Forestry  52(2), 82–93.
Waterman TE, Takata AN (1969) Laboratory study of ignition of host materials by firebrands. Illinois Institute of Technology Research Institute, Project J6142-OCD Work Unit 2539A. (Chicago, IL)




A An oblique air flow of ~45° to the tray holding the fuel bed was selected because it was the minimum angle that avoided the air flow blowing the fuel particles off the aluminium tray. A later modification of the experimental device allowed conducting tests with a horizontal air flow.

B Bulk density not varying within a same type of fuel bed, it was not possible to carry out a logistic regression analysis of the ignition probability for each type of fuel bed. Thus, the various litter beds were merged to solve this problem.

C It is important to stress that, in the present work, RoS is the time required by the fire to reach one side of the sample, corresponding to a distance of 0.35 m with no wind.