Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

Modeling and mapping wildfire ignition risk in Portugal

Filipe X. Catry A C , Francisco C. Rego A , Fernando L. Bação B and Francisco Moreira A
+ Author Affiliations
- Author Affiliations

A Centre of Applied Ecology ‘Prof. Baeta Neves’, Institute of Agronomy, Technical University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal.

B Institute of Statistics and Information Management, New University of Lisbon, Campus de Campolide, 1070-312 Lisbon, Portugal.

C Corresponding author. Email: fcatry@isa.utl.pt

International Journal of Wildland Fire 18(8) 921-931 https://doi.org/10.1071/WF07123
Submitted: 25 August 2007  Accepted: 30 January 2009   Published: 9 December 2009

Abstract

Portugal has the highest density of wildfire ignitions among southern European countries. The ability to predict the spatial patterns of ignitions constitutes an important tool for managers, helping to improve the effectiveness of fire prevention, detection and firefighting resources allocation. In this study, we analyzed 127 490 ignitions that occurred in Portugal during a 5-year period. We used logistic regression models to predict the likelihood of ignition occurrence, using a set of potentially explanatory variables, and produced an ignition risk map for the Portuguese mainland. Results show that population density, human accessibility, land cover and elevation are important determinants of spatial distribution of fire ignitions. In this paper, we demonstrate that it is possible to predict the spatial patterns of ignitions at the national level with good accuracy and using a small number of easily obtainable variables, which can be useful in decision-making for wildfire management.

Additional keywords: geographic information systems, ignition occurrence, logistic regression, spatial patterns.


Acknowledgements

We acknowledge the Portuguese Forest Services (DGRF) for all collaboration and for making available the wildfire database. We acknowledge Paula Lopes, António Nunes and Vasco Nunes for their help on preliminary data processing. We also acknowledge several important comments made by three anonymous reviewers, which contributed to improve this paper. Part of this study was supported by the European Commission under the 6th Framework Program through the Integrated Project ‘Fire Paradox’ (contract no. FP6–018505), and by Instituto de Financiamento da Agricultura e Pescas through the project ‘Recuperação de Áreas Ardidas’.


References


Amatulli G, Pérez-Cabello F , de la Riva J (2007) Mapping lightning/human-caused wildfire occurrence under ignition point location uncertainly. Ecological Modelling  200, 321–333.
Crossref | GoogleScholarGoogle Scholar | Carreiras JMB, Pereira JMC (2006) An inductive fire risk map for Portugal. In ‘Proceedings of the 5th International Conference on Forest Fire Research’, 27–30 November 2006, Figueira da Foz, Portugal. (Ed. DX Viegas) (CD ROM) (Associação para o Desenvolvimento da Aerodinâmica Industrial (ADAI): Coimbra, Portugal)

Catry FX, Almeida RM, Rego FC (2004) Produção de cartografia de visibilidades para Portugal continental. A importância da sua utilização na vigilância contra incêndios florestais. Silva Lusitana 12(2), 227–241. [In Portuguese]

Catry FX, Damasceno P, Silva JS, Galante M, Moreira F (2007a) Spatial distribution patterns of wildfire ignitions in Portugal. In ‘Proceedings of the 4th International Wildland Fire Conference’, 13–17 May 2007, Seville, Spain. (CD ROM) (Ministerio de Medio Ambiente: Seville, Spain)

Catry FX, Rego FC, Santos T, Almeida J, Relvas P (2007b) Forest fires prevention in Portugal – using GIS to help improving early fire detection effectiveness. In ‘Proceedings of the 4th International Wildland Fire Conference’, 13–17 May 2007, Seville, Spain. (CD ROM)

Catry FX, Rego FC, Moreira F, Bação F (2008) Characterizing and modelling the spatial patterns of wildfire ignitions in Portugal: fire initiation and resulting burned area. In ‘International Conference on Modelling, Monitoring and Management of Forest Fires’, 17–19 September 2008, Toledo, Spain. (Eds J de las Heras, Brebbia CA, Viegas D, V Leone) Vol. 119, pp. 213–221. (WIT Press: Southampton, UK)

Chou YH (1992) Management of wildfires with a geographical information system. International Journal of Geographical Information Systems  6, 123–140.
Crossref | GoogleScholarGoogle Scholar | Chuvieco E, Salas J, Barredo JI, Carvacho L, Karteris M, Koutsias N (1998) Global patterns of large fire occurrence in the European Mediterranean Basin: a GIS analysis. In ‘Proceedings of the 3rd International Conference on Forest Fire Research – 14th Conference on Forest Fire Meteorology. Vol II’. (Ed. DX Viegas) pp. 2447–2462. (Associação para o Desenvolvimento da Aerodinâmica Industrial (ADAI): Coimbra, Portugal)

Chuvieco E, Allgöwer B, Salas J (2003) Integration of physical and human factors in fire danger assessment. In ‘Wildland Fire Danger Estimation and Mapping. The Role of Remote Sensing Data’. (Ed. E Chuvieco) Vol. 4, pp. 197–218. (World Scientific Publishing: Singapore)

Congalton R (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment  37, 35–46.
Crossref | GoogleScholarGoogle Scholar | DGF (2001) ‘Inventário florestal nacional. Portugal continental. 3a Revisão, 1995–1998.’ (Direcção-Geral das Florestas: Lisbon) [In Portuguese]

DGF (2003) Determinação das causas dos incêndios florestais em 2002. Direcção-Geral das Florestas Report. (Lisbon, Portugal) [In Portuguese]

DGRF (2006) Incêndios florestais – Relatório de 2005. Divisão de Defesa da Floresta Contra Incêndios. Direcção-Geral dos Recursos Florestais Report. (Lisbon, Portugal) [In Portuguese]

EC (2007) Forest fires in Europe 2006. Official Publication of the European Commission, EUR 22931 EN. (Ispra, Italy)

ESRI (2005) ‘ArcGIS 9.1. Software.’ (Environmental Systems Research Institute: Redlands, CA)

FAO (1986) Wildland fire management terminology. Food and Agriculture Organization of the United Nations, FAO Forestry Paper 70. (Rome, Italy)

Finney MA (2005) The challenge of quantitative risk analysis for wildland fire. Forest Ecology and Management  211, 97–108.
Crossref | GoogleScholarGoogle Scholar | Hosmer DW, Lemeshow S (1989) ‘Applied Logistic Regression.’ (John Wiley and Sons: New York)

IA (2003) Atlas do Ambiente Digital. Instituto do Ambiente. Available at www.iambiente.pt/atlas/est/index.jsp [Verified 2 March 2007]

IA (2005) CORINE Land Cover 2000 Portugal. Instituto do Ambiente. (Lisbon, Portugal)

IGEOE (2005) Carta Militar Itinerária de Portugal. Instituto Geográfico do Exército. Available at www.igeoe.pt [Verified 2 March 2007]

IGP (2004a) Cartografia de risco de incêndio florestal. Relatório do distrito de Viseu. Centro para a Exploração e Gestão de Informação e Situações de Emergência, IGP Technical Report. (Lisbon, Portugal) [In Portuguese]

IGP (2004b) Carta administrativa oficial de Portugal. Instituto Geográfico Português. Available at www.igeo.pt/igeo/portugues/Frameset-egeo.htm [Verified 2 March 2007]

INE (2003) Dados estatísticos da população em Portugal – Censos 2001. Instituto Nacional de Estatística. (Lisbon, Portugal) [Database in Portuguese]

Johnson EA, Miyanishi K (2001) ‘Forest Fires: Behavior and Ecological Effects.’ (Academic Press: San Diego, CA)

Koutsias N, Kalabokidis KD , Allgöwer B (2004) Fire occurrence patterns at landscape level: beyond positional accuracy of ignition points with kernel density estimation methods. Natural Resource Modeling  17(4), 359–375.
Legendre P, Legendre L (1998) ‘Numerical Ecology.’ 2nd English edn. (Elsevier Science BV: Amsterdam)

Loboda TV , Csiszar IA (2007) Assessing the risk of ignition in the Russian Far East within a modelling framework of fire threat. Ecological Applications  17(3), 791–805.
Crossref | GoogleScholarGoogle Scholar | PubMed | MMA (2007) Los incendios forestales en España. Decenio 1996–2005. Area de Defensa Contra Incendios Forestales, Ministerio de Medio Ambiente. (Madrid, Spain)

Moreno JM, Vázquez A, Vélez R (1998) Recent history of forest fires in Spain. In ‘Large Forest Fires’. (Ed. JM Moreno) pp. 159–186. (Backhuys Publishers: Leiden, the Netherlands)

NASA, NIMA, DLR, ASI (2004) Digital elevation model. National Aeronautics and Space Administration; National Imagery and Mapping Agency; German space agency (DLR); Italian space agency (ASI). Available at ftp://edcsgs9.cr.usgs.gov/pub/data/srtm [Verified 8 August 2006]

NWCG (2006) Glossary of wildland fire terminology. National Wildfire Coordinating Group, PMS 205. (Boise, ID)

Norusis MJ (2002) ‘SPSS for Windows – Base System User’s Guide.’ (SPSS Inc.: Chicago, IL)

Nunes A, Duarte J (2006) Assessment of forest fire risk in the Serra da Estrela Natural Park (Portugal): methodological application and validation. In ‘Proceedings of the 5th International Conference on Forest Fire Research’, 27–30 November 2006, Figueira da Foz, Portugal. (Ed. DX Viegas) (CD ROM) (Associação para o Desenvolvimento da Aerodinâmica Industrial (ADAI): Coimbra, Portugal)

Pearce J , Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling  133, 225–245.
Crossref | GoogleScholarGoogle Scholar | Rego FC, Catry FX, Maia MJ, Santos TA, Gravato A, Castro IC, Moreira FO, Pinto PR, Almeida J (2004) Análise da rede nacional de postos de vigia em Portugal. Centro de Ecologia Aplicada Prof. Baeta Neves – Instituto de Novas Tecnologias, Technical Report. (Lisbon, Portugal) [In Portuguese]

Robin JG, Carrega P, Fox D (2006) Modelling fire ignition in the Alpes-Maritimes Department, France, a comparison. In ‘Proceedings of the 5th International Conference on Forest Fire Research’, 27–30 November 2006, Figueira da Foz, Portugal. (Ed. DX Viegas) (CD ROM) (Associação para o Desenvolvimento da Aerodinâmica Industrial (ADAI): Coimbra, Portugal)

Roloff GJ, Mealey SP, Clay C, Barry J, Yanish C , Neuenschwander L (2005) A process for modelling short- and long-term risk in the southern Oregon Cascades. Forest Ecology and Management  211, 166–190.
Crossref | GoogleScholarGoogle Scholar | Sokal RR, Rohlg FJ (1987) ‘Biometry.’ (WH Freeman and Company: New York)

SPSS (2006) ‘SPSS for Windows.’ (SPSS Inc.: Chicago, IL)

Swets JA (1988) Measuring the accuracy of diagnostic systems. Science  240, 1285–1293.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Vasconcelos MJP, Silva S, Tomé M, Alvim M , Pereira JMC (2001) Spatial prediction of fire ignition probabilities: comparing logistic regression and neural networks. Photogrammetric Engineering and Remote Sensing  67(1), 73–81.


Vasilakos C, Kalabokidis K, Hatzopoulos J, Kallos G , Matsinos Y (2007) Integrating new methods and tools in fire danger rating. International Journal of Wildland Fire  16(3), 306–316.
Crossref | GoogleScholarGoogle Scholar |

Vazquez A , Moreno JM (1998) Patterns of lightning- and human-caused fires in peninsular Spain. International Journal of Wildland Fire  8(2), 103–115.
Crossref | GoogleScholarGoogle Scholar |

Vega-Garcia C, Woodard PM, Titus SJ, Adamowicz WL , Lee BS (1995) A logit model for predicting the daily occurrence of human-caused forest fires. International Journal of Wildland Fire  5(2), 101–111.
Crossref | GoogleScholarGoogle Scholar |

Vega-Garcia C, Lee BS, Woodard PM , Titus SJ (1996) Applying neural network technology to human-caused wildfire occurrence prediction. AI Applications  10(3), 9–18.


Yang J, Healy HS, Shifley SR , Gustafson EJ (2007) Spatial patterns of modern period human-caused fire occurrence in the Missouri Ozark Highlands. Forest Science  53(1), 1–15.

CAS |