Accessory Publication

Accurate estimation of mean fire interval for managing fire

Xiaojun Kou^A and William L. Baker^{B,C}

^ACollege of Life Sciences, Beijing Normal University, Beijing 150040, China.

^BEcology Program and Department of Geography, University of Wyoming, Laramie, WY 82071, USA.

^CCorresponding author. Email: bakerwl@uwyo.edu

Equivalence of two methods for calculating mean individual-tree fire-interval

As proposed by Baker and Ehle (2001), the individual-tree fire-interval method calculates stand mean fire interval in the following manner: 'the mean fire interval of each sample tree is first calculated, then these individual-tree mean fire intervals are averaged among all sample trees, weighted by the number of intervals used to estimate individual-tree fire-interval, to obtain the stand mean fire interval'. The mean fire interval of each sample tree is calculated by:

$$FI_i = (EA_i - SA_i)/IN_i, \quad (1)$$

where FI_i is the mean fire interval of tree *i*, EA_i is the age of the last scar on tree *i*, SA_i is the age of the first scar on tree *i*, and IN_i is the total number of fire intervals on tree *i* between ages EA_i and SA_i . Stand mean fire interval, using the individual-tree fire-interval (*ITFI*) method, is calculated by:

$$ITFI = \frac{\sum_{i=1}^{M} (FI_i / IN_i)}{\sum_{i=1}^{M} IN_i} = \frac{\sum_{i=1}^{M} (EA_i - SA_i)}{\sum_{i=1}^{M} IN_i}, \quad (2)$$

where *M* is the number of sampled trees. We know that:

 $IN_i = SN_i - 1$, and $EA_i - SA_i = TA_i - \Delta OS_i - \Delta ETA_i$, (3)

where SN_i is the total number of scars on tree *i*, ΔOS_i is the number of years from tree origin to the first scar, and ΔETA_i is the number of years from the last scar to the year of sampling.

By applying the above two equations, we get:

$$ITFI = \frac{\sum_{i=1}^{M} (TA_i - \Delta OS_i - \Delta ETA_i)}{\sum_{i=1}^{M} (SN_i - 1)} = \frac{\sum_{i=1}^{M} TA_i - \sum_{i=1}^{M} \Delta OS_i - \sum_{i=1}^{M} \Delta ETA_i}{\sum_{i=1}^{M} SN_i - M}$$
(4)

If we assume that the ΔOS interval on average is about half the ITFI, since trees can regenerate any time during the two successive fires, then:

$$\frac{\sum_{i=1}^{M} \Delta OS_i}{M} = \frac{ITFI}{2} \quad (5)$$

 ΔETA is also about half of ITFI for sampling time could be any time during two successive fires:

$$\frac{\sum_{i=1}^{M} \Delta ETA_i}{M} = \frac{ITFI}{2} \quad (6)$$

Applying these two equations, we get:

$$ITFI = \frac{\sum_{i=1}^{M} TA_{i} - M \cdot ITFI / 2 - M \cdot ITFI / 2}{\sum_{i=1}^{M} SN_{i} - M} = \frac{\sum_{i=1}^{M} TA_{i} - M \cdot ITFI}{\sum_{i=1}^{M} SN_{i} - M}$$
(7)

Multiplying both sides of the equation by $\sum_{i=1}^{M} SN_i - M$, we get:

$$ITFI \cdot \sum_{i=1}^{M} SN_{i} - M \cdot ITFI = \sum_{i=1}^{M} TA_{i} - M \cdot ITFI \quad (8)$$
$$ITFI \cdot \sum_{i=1}^{M} SN_{i} = \sum_{i=1}^{M} TA_{i} \quad (9)$$
$$ITFI = \frac{\sum_{i=1}^{M} TA_{i}}{\sum_{i=1}^{M} SN_{i}} \quad (10)$$

This shows that the last formula is equivalent to the method proposed by Baker and Ehle (2001).