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This manuscript is a complementary publication to supplement the article
referred above. The statistical techniques used are standard in extreme value
theory (see Embrechts et al. (1997) or the book by Coles (2001)).

Global Analysis
We start by doing a preliminary data analysis in order to capture the main
features of the Portuguese wildfire data. The strong spatial and temporal va-
riations shown by the data will be addressed at later stages.

Figure 1 shows the behavior of all the data set, as well as the observations
> 100 hectares.
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Figure 1: Histograms and boxplots - global sample (top row) and observations
> 100 (bottom row)

The box-plot of the complete data clearly displays a considerable number of
large values. It is quite evident from this plot that any model fitted to the com-
plete data set, no matter how good it is, would result in the underestimation of
large fires. This suggests that large fires should be modeled separately. Asymp-
totic models suggested by extreme value theory are good candidates. Moreover,
the two histograms and the two boxplots presented in Figure 1 look the same.
This suggests that the data is heavy-tailed.



The first step is to find out the extent of the tail heaviness.A common way
to assess the heaviness of a tail is by means of the QQ-plots. Let x;., be the
ith observation of an ascending ordered sample (z1., < Z2., < ... < Zpp). In
an Exponential QQ-plot, the exponential quantiles, given as —In(1 — p;),
where p; = i/(n + 1), are plotted as a function of the ordered sample, x;.,,
i=1,2,..,n. In a Pareto QQ-plot, —log(1 — p;) are plotted as a function of
log(z;). As is known, the Pareto distribution is heavier tailed than the expo-
nential distribution. Exponential distribution is known to be in the domain of
attraction of the Gumbel distribution, whereas, the Pareto distribution is in the
domain of attraction of the Fréchet distribution. Therefore, both distributions
are commonly used as benchmark to assess the thickness of the distribution’s
tail and consequently for choosing the appropriate model for large values. The
linearity of a QQ-plot indicates that the underlying model might be adequate to
the data. The exponential and the Pareto tails are given by F(x) = exp(—Az),
x>0, A>0and F(z) =27, 2> 1, A > 0, respectively.

Figure 2 shows the exponential and Pareto QQ-plots of the global sample
and of the observations equal or larger that 100 hectares.
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Figure 2: Exponential (left) and Pareto (right) QQ-plots - global sample (top
row) and observations > 100 (bottom row)



The linearity of the plot is evident for the Pareto QQ-plots, specially for
the ”> 100 hectares” sample. The overall conclusion of this preliminary data
analysis is that the wildfires with scars above 100 hectares satisfy the threshold
stability criteria and that the data are consistent with a heavy-tailed distri-
bution, belonging to the domain of attraction of a Fréchet distribution. The
statistical methods of inference on large observations are based on the assump-
tion that the data are independent and identically distributed. However, by
nature, the data clearly show spatial and temporal variations which invalidate
this assumption. Therefore, a careful analysis of the temporal and the spatial
variation inherent in the large values is needed.

Temporal Analysis
In order to assess the temporal variation that is expected to exist in large obser-
vations, QQ-plots for each of the 21 years of data are represented in Figures 3
- 7. The Pareto QQ-plots of the 21 years look very similar. Because of their
evident linearity, we conclude the tails of the underlying distributions (for all
the years) are heavy-tailed.

1984 1985
5] © )
o

g o g o
€ €
© <
ERRS T <
o =]
o o
s s
a a

(= o

2 3 4 5 6 7 8 2 4 6 8
log(area) log(area)
1986 1987
o o

E © o § ﬁ ©
2 =
& <]
3 < 3 <
2 2
£ 2
% o~ % o~
o o

o o

2 4 6 8 2 4 6 8
log(area) log(area)

Figure 3: Pareto QQ-plots of the wildfire sizes (1984-1987)
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Figure 4: Pareto QQ-plots of the wildfire sizes (1988-1991)
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Figure 5: Pareto QQ-plots of the wildfire sizes (1992-1995)
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Spatial analysis

The regions of Portugal (Figure 8) that are considered in this study, as well

as the notation used, are:

1 - Minho and Douro Litoral; 2 - Trds-os-Montes and Alto Douro; 3 - Porto;
4- Beira Interior; 5 - Beira Litoral, Estremadura and Ribatejo; 6 - Lisboa; 7 -

Alentejo; 8 - Algarve

Figure 8: Regions of Portugal

The distribution of the number o fires that occurred in terms of the regional
distribution is presented in Figure 9, both for the original sample and for the
sample of all the observations > than 100 hectares. The data is presented in
Table 1. The plots show that region 4 has (both) the largest number of wildfires

and also of large wildfires.

Region 1 2 3 4 5 6 7 8
% of wildfires 17 25 7 30 10 7 3 1
Number of wildfires || 5060 | 7738 | 2198 | 9313 | 2998 | 2110 | 819 | 380

Table 1: Percentage of wildfires per region
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Figure 9: Distribution of wildfires according to the eight regions - global sample
(left) and observations > 100 (right)

The histograms of the eight regions are presented in Figure 10.
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Figure 10: Histograms of the eight regions



The Pareto QQ-plots of the eight regions are presented in Figure 11. These
plots clearly show that, although there is some variation from one region to
another, all the underlying distributions of the eight regions are heavy-tailed.
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Figure 11: Pareto QQ-plots for the eight regions



The boxplots of the eight regions are presented in Figure 12.
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So far, the preliminary data analysis has indicated us that:

1. The data is consistent with a heavy-tailed wildfire size distribution, be-

However, rather that making inference on the extreme values by fitting
Fréchet distributions to the annual and to the regional data, we will make in-
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Figure 12: Box-plots of the eight regions

longing to the domain of attraction of the Fréchet distribution.

There are strong annual, as well as regional, variations in the wildfire
sizes. However, large wildfires sizes, over different year and regions, are
all consistent with a heavy-tailed distributions, all belonging to the domain
of attraction of (possibly different) Fréchet distributions. Hence, different
Fréchet extreme value distributions could be fitted to each of the annual
and regional data sets to assess the regional and temporal variations in

the behavior of extreme wildfires.




ference on excess wildfire sizes over a fixed threshold, using the generalized
Pareto distribution (GPD). This inferential method is often called Peaks Over
Threshold (POT). The duality between the two inferential techniques is well
established. Inference based on excesses is often more data-efficient, and is pre-
ferred to direct inference on extreme value distributions. The estimated model
parameters of the extreme value model can be recovered from the estimated
model parameters of the corresponding GPD. We refer the reader to any book
on extreme value theory, such as Embrechts et al. (1991) or Coles (2001).

Hence, we assume that the excesses (or exceedances) above a sufficiently
high threshold (u) have, in the limit, a GDP. The distribution function of the
GPD(k,0), k € R and o > 0, is given by:

retbo= 10T

~1/k

where 0 > 0 and k > 0, z > 0, while for £ < 0 the range is 0 < z < —o/k. The
parameters k and o correspond, respectively, to the shape and scale parameters
of the distribution.

We note that the exponential and the Pareto distributions belong to gene-
ralized Pareto class of distributions.

The crucial issue of the POT method is the choice of the threshold u. There
must be a "trade-off” between bias and variance of the estimators of the param-
eters. In fact, a too low w results directly in an increase of the number of large
observations used for the inference, which increases the bias while decreasing
the variance of the estimators. On the other hand, a high u reduces the portion
of the sample used for the inference and therefore decreases the bias of the es-
timators, while increasing their variances.

In order to choose an adequate u, we usually plot the estimates of the pa-
rameters, as a function of either the threshold or the number of upper order
statistics (r):

e the sample mean excess function (MEF) given as

Z?:1(Xi —u)”"

T ,where 1 is the indicator function.
Zi:l {X;>u}

en(u) =

e the Pickands’ [Pickands (1975)] and the Moments [Dekkers and de Haan
(1989)] parameter estimates,

e the estimates provided by a bias-corrected version of Hill’s estimator [Beir-
lant et al.(2004)],

e the Maximum Likelihood (ML) estimates.
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The aspect of the MEF gives valuable information regarding the tail of the
distribution. Again, the exponential and the Pareto are used as benchmarks. It
is known that the theoretical MEF of an exponential distribution is constant,
regardless of the value of u considered. The theoretical Pareto MEF is linear
with a positive slope, for every threshold u considered (see e.g. Embrechts et
al. (1991) - Figure 4.2.4. page 295).

It may be interesting, at this stage, to recall the fact that, if X ~ GPD(k, o),
then the MEF is given as,
o+ ku
e(u) = T %
for k <1, u > 0 and o + ku > 0. This means that for the GPD the plot of the
MEF should be linear with slope and intercept equal to k/(1—k) and o /(1 —k),
respectively.

The MEFs of the data classified by region are presented in Figure 13. The
linearity and the fact that all the lines have positive slopes above some point
definitely supports the Pareto tail.
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Figure 13: MEF of the eight regions of Portugal
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The moments’ estimator

These plots, as well as the ones that follow, may be difficult to analyze. As
such, they should all be considered, simultaneously, to produce an adequate
value of u for each region. By a careful analysis of the plots presented in Figure
14, it can be deduced that the number of upper order statistics r which should
be selected, or the corresponding threshold v = x,_,.,, for each of the region
can be chosen as:

Regions 1 - r ~ 350 (u = 130)
Regions 2 - r ~ 500 (u = 200)
Regions 3 - r ~ 150 (u = 120)

The plots of regions 4-8 are a bit messy and as such we will not, at this stage,
propose any value for 7.
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The bias-corrected Hill’s estimator
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Figure 15: Hill’s estimates (circle) and Bias corrected estimates (solid line) for
regions 1 (top left), 2 (top right), 3 (bottom left) and 4 (bottom right)
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The ML estimator

The ML estimates of the shape parameter of the GPD are presented (for the
eight regions) as a function of the number of exceedances.
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Based on the above arguments, we have fitted different GPD models with
several different thresholds. The best models for each of the eight regions are
chosen based on bias-variance arguments.

GPD models - let M;; be the jth GPD model of the ith region, j

1,2, ...,mod;, being mod; the number of models considered for region i and

i=1,2,...,8.
Model u # of k Se k | CI k (95%) G Se & CI o (95%)
excesses Inf Sup Inf Sup
(%)
My 100 522 (10.3) 0.57 0.07 0.43 0.71 87.10 6.97 73.43 100.76
M2 250 158 (3.1) 0.49 0.12 0.26 0.73 180.71 24.86 131.99 229.44
M3 500 53 (1.0) 0.41 0.20 0.01 0.81 352.85 84.17 187.88 517.82
My 750 26 (0.5) 0.26 0.34 | -0.41 0.92 595.57 232.27 | 140.32  1050.82
May 100 1037 (13.4) | 0.48 0.05 0.38 0.57 117.54 6.54 104.72 130.37
Moo 250 379 (4.9) 0.33 0.07 0.19 0.47 225.64 19.48 187.46 263.82
Mas 500 149 (1.9) 0.29 0.11 0.07 0.50 318.03 43.28 233.20 402.86
Moy 750 76 (1.0) 0.22 0.13 -0.03  0.47 412.96 71.07 273.66 552.25
Mos 1000 41 (0.5) 0.22 0.18 -0.13 0.57 487.96 114.20 264.13 711.80
M3y 100 189 (8.6) 0.53 0.11 0.30 0.75 117.31 15.18 87.55 147.06
M3zo 250 75 (3.4) 0.47 0.16 0.16 0.79 196.07 37.76 122.06 270.08
M3ss 500 28 (1.3) 0.52 0.28 -0.03 1.07 298.08 97.07 107.83 488.34
Masy 750 13 (0.6) 0.51 0.49 (1) (1) 468.66 255.38 (1) (1)
Mss 1000 8 (0.4) 0.29 | 0.88 (1) (1) 769.79 | 728.14 (1) (1)
My 100 1943 (20.9) [ 0.59 0.04 0.52 0.67 166.68 6.98 153.01 180.36
Myo 250 946 (10.2) 0.50 0.05 0.40 0.60 284.77 16.14 253.13 316.40
Mys 500 460 (4.9) 0.51 0.07 0.37 0.64 402.92 32.80 338.63 467.21
My 750 272 (2.9) 0.48 0.09 0.31 0.66 536.23 54.00 430.39 642.07
Mys 1000 186 (2.0) 0.59 0.12 0.35 0.82 548.75 72.62 406.42 691.09
Mye 1250 125 (1.3) 0.56 0.14 0.29 0.83 711.64 110.85 | 494.38 928.91
My7 1500 88 (0.9) 0.51 0.15 0.22 0.81 939.26 162.49 | 620.78  1257.74
Mg 1750 74 (0.8) 0.64 0.19 0.27 1.01 823.28 169.79 | 490.49  1156.07
Ms1 100 527 (17.6) 0.90 0.09 0.73 1.07 157.25 13.96 129.89 184.62
M2 250 259 (8.6) 0.68 0.11 0.46 0.89 383.59 44.32 296.72 470.46
Ms3 500 153 (5.1) 0.65 0.13 0.40 0.91 557.70 81.84 397.30 718.11
My 750 98 (3.3) 0.57 0.15 0.28 0.87 854.78 147.07 | 566.52  1143.03
Mss 1000 79 (2.6) 0.74 0.21 0.32 1.15 755.88 166.42 | 429.69  1082.06
Mse 1250 57 (1.9) 0.61 0.21 0.20 1.03 1134.89 | 267.64 | 610.31  1659.46
M7 1500 48 (1.6) 0.71 0.26 0.20 1.22 1097.36 | 305.92 | 497.76  1696.96
Mss 1750 38 (1.3) 0.64 0.27 0.11 1.16 | 1428.49 | 428.80 | 588.04 2268.94
Me 100 277 (13.1) 0.76 0.10 0.57 0.96 62.62 6.59 49.70 75.53
Me2 150 153 (7.3) 0.91 0.14 0.64 1.19 78.89 11.54 56.27 101.51
Me3s 200 95 (4.5) 1.08 0.20 0.69 1.47 97.38 18.96 60.22 134.54
Mgy 250 64 (3.0) 1.19 0.25 0.70 1.68 127.19 30.27 67.87 186.52
Mses 300 50 (2.4) 1.52 0.36 0.81 2.22 107.36 34.13 40.47 174.26
Mee 350 37 (1.8) 1.67 0.46 0.77 2.57 137.39 55.06 29.48 245.31
Mer 400 28 (1.3) 1.52 0.46 0.62 2.42 257.93 103.28 55.50 460.36
M1 50 100 (12.2) 0.65 0.15 0.36 0.94 41.34 6.92 27.78 54.91
Mo 100 40 (4.9) 1.05 0.32 0.42 1.67 46.08 14.66 17.35 74.81
Mo 150 21 (2.6) 1.52 | 0.69 (1) (1) 49.80 27.67 (1) (1)
Mgy 100 66 (17.4) 1.64 0.33 1.00 2.29 85.24 24.39 37.44 133.04
Msgo 250 31 (8.2) 1.51 0.46 0.61 2.41 325.59 133.67 63.59 587.58
Msgs 500 18 (4.7) 1.35 0.61 (1) (1) 895.43 507.44 (1) (1)
Mgy 1000 13 (3.4) 1.37 | 0.78 (1) (1) | 1291.41 | 950.16 (1) (1)

Table 2: The various models fitted to the regional data

(1) - unreliable confidence interval
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The best models selected for the eight regions are the following:

Region | Model | Threshold
1 Mo 250
2 Mao 250
3 Mso 250
4 Mas 500
5 Ms3 500
6 Mes 250
7 Moo 100
8 Mg 100

Table 3: Final GPD models fitted to the data

The quantiles Qq.995 and Qg.999, estimated using the above fitted models and
the corresponding confidence intervals (95%), are given in the following table.

Region Qo.995 L Inf L Sup Qo.999 L Inf L Sup
1 788.45 681.76 945.98 1887.07 1415.81 2970.56
2 1016.68 917.15 1148.35 2029.34 1675.29 2647.22
3 863.93 697.43 1164.00 2038.41 1385.04 4263.03
4 2240.95 | 1999.12  2564.26 5431.73 4332.37 7360.62
5 3544.96 | 2784.20  4939.07 10819.69 6765.85  22129.75
6 1059.79 733.89 1930.85 6399.20 2903.29  29603.92
7 534.60 327.52 1556.12 2637.72 861.13 2890.41
8 17668.15 | 4974.84 99105.93 || 247863.56 | 28189.84 99105.93

Table 4: Estimated quantiles using the final models fitted to the data

The estimated quantiles can be compared with the empirical quantiles (to
be presented in the next table) to have an idea of how well the model fits to
data.

Some empirical quantiles
Region Q0.995 Q0.999
1 746.81 2308.29
1009.53 1734.52
809.38 2587.27
2213.13 4746.19
3855.85 8372.32
724.93 8873.61
761.23 1590.68
11950.35 | 49829.96

0 | U = W N

Table 5: Empirical quantiles
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Fitting annual extremes

Similar inferential techniques are used to fit models for large values, separately
for each of the 21 years. Therefore, a detailed information will not be provided
here. One pertinent question that needs to be answered is: ”Is if the probability
structure of the extreme wildfires changing over time?”. The fitted shape and
scale parameters for each of the 21 years are given in Figure 18. The above
question can then be formulated as a statistical test based on the time series of
the estimated parameters. These tests, based on the estimated autocorrelation
structures, are standard in time series analysis. Unfortunately, due to the short
series (21 consecutive observations), they have very low power. Therefore, we
avoid making formal statements about the temporal variation of the probability
structure. However, we note that the estimated autocorrelation and partial au-
tocorrelation functions given in Figure 18 do not seem to indicate any temporal
structure for the estimated parameters.
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Figure 18: Estimated parameters and corresponding ACF and PACF for the
21 years (top row - k; bottom row - o), considering u = 100

An important issue is also to access the influence of the largest four ob-

servations recorded in 2003. Are they influential in terms of tail heaviness?
Should they be rejected on the grounds that they are most likely outliers? We
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proceeded as follows:
e retrieve the largest observation and fit a first model;

e retrieve the largest and 2nd largest observations and fit a second model;
e retrieve the largest, 2nd and 3rd largest observations and fit a third model;

e retrieve the largest, 2nd, 3rd and 4th largest observations and fit a fourth
model.

The estimates of k and o, as well as the observations that were left out from
this analysis, are presented in Table 6.

Sample Observations Estimate | Estimate
size retrieved of k of o
1185 66070.63 0.83 239.25
1184 66070.63 and 56550.80 0.80 235.22
1183 66070.63, 56550.80 and 43970.25 0.76 233.53
1182 | 66070.63, 56550.80, 43970.25 and 43282.33 0.70 237.43

Table 6: Additional models for 2003 - © = 100

The values contained in Table 6 clearly show the influence of these large
observations on the estimated parameters (see Table 2).

Software
Graphs and general data handling - R
Models - evir 1.5 functions (Splus - A. McNeil; nowadays R - Alec Stephenson).
Hill’s estimator and Bias-reduced estimator (Beirlant et al. (2004)) retrieved in
http://ucs.kuleuven.be/Wiley /index.html.
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