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Appendix S1. Modelling the ignition grids (fixed factor) 

The ignition grids (Fig. S1) were built using a logistic regression modeling method (Scott 

et al. 2012; Parisien et al. 2013) applied to a 100 × 100-m2-resolution raster data framework over 

the study area. The dependent variable was a binary vector of presumed fire ignition locations 

(i.e. presences) and 500 randomly chosen background points (i.e. absences) that did not overlap 

with the fire presences. The fire locations were obtained from a digital atlas of >3-ha fires that 

occurred during 1981–2010. When the fire origin was unknown, the centroid of the fire polygon 

was used. Three explanatory variables were used in both lightning- and human-caused models: 

elevation, topographic position index, which is an index of concavity (calculated using a 3-km 

window), and solar radiation, which is computed from aspect and slope. The two additional 
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variables were only used for the human-caused models as proxies for anthropogenic influence: 

the distance to roads and road density (calculated using a 25-km moving window).  

The ignition grids were constructed using a stepwise process. First, we used a generalised 

additive model (GAM) regression model implemented in the R functions gam and step.gam 

of the gam package (Hastie 2013) to select the best predictor variables for each combination of 

season and fire cause. Non-significant predictor variables were excluded. Secondly, generalised 

linear models (GLMs) were constructed using the R function ‘glm’ to obtain logistic regression 

models of ignition probability as a function of the best predictor variables and their quadratic 

terms. Finally, fire ignition grids were obtained using the predict function of the raster R 

package (Hijmans 2014) to apply the logistic models to the rasterised predictor variables. 

Fig. S1.1. Locations of >3-ha lightning- (a and c) and human-caused (e and g) fires (black dots) 

during the fire season. The lightning- (b and d) and human-caused (f and h) ignition grids used in 
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the Burn-P3 modeling. These grids represent the relative probability of ignition of fires ≥3 ha 

within a given combination of season and cause. 
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Appendix S2. The percentage cover of each Canadian Fire Behaviour Prediction System 

fuel type in the three fire zones, and the study area totals 

 

Table S2.1. The percentage cover of each Fire Behavior Prediction System fuel type in the 

three fire zones 

SAF, subalpine forest; GDF, grassland and dry forest; MTF, moist temperate forest 

FBP fuel typeA 
Observed by fire zone  Baseline by fire zone  2080s by fire zone 

SAF GDF MTF All  SAF GDF MTF All  SAF GDF MTF All 

C-2 4 0 0 2  0 0 0 0  0 0 0 0 

C-3 60 12 39 36  88 54 27 66  28 14 22 21 

C-4 1 0 2 1  0 0 0 0  0 0 0 0 

C-5 1 1 29 4  4 1 67 11  50 13 51 35 

C-7 16 49 9 30  0 27 1 11  15 55 22 32 

D-1, 2 1 2 9 2  0 0 0 0  0 0 0 0 

M-1, 2 1 2 5 2  0 0 0 0  0 0 0 0 

S-1 2 1 1 1  0 0 0 0  0 0 0 0 

O-1a 10 26 3 17  0 6 0 2  0 4 0 2 

 
AC-2, Boreal spruce; C-3, mature jack or lodgepole pine; C-4, immature jack or lodgepole pine; 
C-5, red and white pine; C-7, ponderosa pine–Douglas-fir leafless; D-1, 2, aspen; M-1, 2, boreal 
mixedwood; S-1, jack or lodgepole pine slash; O-1a, matted grass. 
 

Table S2.2. The proportion of fires (%) (i.e. escaped fire rates) used in Burn-P3 simulations 

for the observed period by fire season, cause of ignition and fire zone 

SAF, subalpine forest; GDF, grassland and dry forest; MTF, moist temperate forest 

 Escaped fire rate (%)  

Fire zone Human Lightning 

 Early spring Late spring Summer Early spring Late spring Summer 

SAF 0.4 1.34 9.64 0 0.25 10.66 

GDF 9.14 10.8 35.21 0.07 0.47 10.26 

MTF 0.44 1.16 3.73 0.04 0.36 6.03 

 



Page 5 of 17 
 

Appendix S3. Modeling fuel type distribution in the baseline and 2080s time periods 

Machine-learning methods were used to fit a bioclimatic envelope model (BEM) (Guisan 

and Zimmermann 2000) to the distribution of ecosystem units and a number of climatic variables 

in the observed period. The BEM was then used to project the baseline and 2080s ecosystem 

units by substituting climatic variables from the high CO2 emission scenario (A2) of the 

Canadian global climate change model, CGCM3.2; A2 assumes that the concentration of CO2 

will double by the end of the 21st century, and temperature will increase by 2.0–5.4°C (ICPP 

2007). The ecosystem units were then converted to Fire Behaviour Prediction (FBP) System fuel 

types (Forestry Canada Fire Danger Group 1992).  

Methods 

Ecosystem units and modeling extent 

We considered an area much larger than the study area for the bioclimatic envelope 

modeling (48 to 52°N –123 to –117°W) to include more climatic variation, although model 

predictions were subsequently clipped to the study area. All variables were converted to 1-km2-

resolution grids in Lambert conformal conic (LCC) projection. 

The finest-scale ecosystem units that have been mapped in the model extent, the ‘variant’ 

level of the British Columbia biogeoclimatic ecological classification (BEC) system (version 

four) (MSRM 2002) and ‘level 4’ of the USA ecoregion maps (EMGR 2007) were the dependent 

variable; there were a total of 105 ecosystem units. Areas of irrigated agriculture (non-fuels) 

were added from the Land Cover for Agricultural Regions database (Agriculture and Agri-Food 

Canada 2000). 
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Bioclimatic variables  

Monthly maximum and minimum temperature and precipitation variables were used to 

calculate 20 biologically relevant and interpretable climate variables for both the baseline and 

2080s periods (Table S3.1). These variables include growing season precipitation and 

temperature, dryness indices, various degree-days, frost-free period, dryness indices, temperature 

extremes and snowfall (Wang et al. 2012a). Monthly values for the baseline period were 

obtained from the 1-km-resolution ClimateWNA (Wang et al. 2012b) dataset that was generated 

using the Parameter Regression of Independent Slopes Model (PRISM Climate Group 2004) to 

interpolate observed climate normals between locations (Daly et al. 2000; Daly et al. 2002). 

Projected future climates were generated by overlaying interpolated 1-km-resolution modeled 

climate anomalies (between 1961–90 and 2071–2100 time periods) onto the 1961–90 data 

(Wang et al. 2012b).  

Because topographic variations may also have significant impacts on BEM fits and 

predictions (Pearson and Dawson 2003; Coudun et al. 2006; Luoto and Heikkinen 2008), we also 

included radiation (RAD, computed from aspect and slope), slope (SLP) and topographic 

position index (TPI, an index of concavity, calculated using a 3-km window with a geographic 

information system (GIS) extension (http://www.jennessent.com/arcview/tpi.htm, accessed 26 

November 2015) based on the digital elevation model (DEM)) in the model; topographic data 

were obtained from US Geological Survey (USGS), Earth Resources Observation Science 

(EROS).1  

  

                                                            
1http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html, accessed 20 May 2013. 
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Bioclimatic envelop modeling 

The bioclimatic variables were used to construct an ecosystem unit BEM using a Random 

Forests technique (Breiman 2001) implemented in the R function ‘randomForest’ (Liaw and 

Wiener 2002). In order to reduce the input data size and balance the prediction model, we 

randomly sampled 100 data points from each modeling unit (variant and level 4 for Canada and 

USA respectively). The out-of-bag (OOB) error rate was used to evaluate the goodness of fit. 

Within a fixed group of predictor variables, OOB varies with the number of simulated trees 

(ntree) (Peters et al. 2007). In order to obtain the ‘optimal’ model for the projection of 

ecosystems, we performed tests with various predictor variable combinations and ntree values, 

and used the model when OOB error rate is low and ntree is small. The final ecosystem BEM 

was used to generate baseline and 2080s ecosystem maps. 

Fuels mapping  

We created a ‘crosswalk’ table (Table S3.2) to convert the BEC variant and level 4 

ecoregion units to FBP System fuel types based on their respective definitions (e.g. Meidinger 

and Pojar 1991) and expert knowledge. Because there are fewer FBP System fuel types than 

ecological units, the fuel types encompass many ecosystem units. Fuel type maps were obtained 

by applying the ecosystem-fuel type crosswalk table to the baseline and 2080s ecosystem maps. 

The projections were constrained by a rule that non-fuel areas remain non-fuel.  

Model evaluation  

The ecosystem unit BEM fitted the observed data reasonably well considering the coarse 

nature of the analysis (mean error rate = 31% for the 105 ecosystem units). The classification 

accuracy of the fuel types (Table S3.3), which was summarised from the confusion table of the 
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ecosystem BEM (see the summary by ecozone (Table S3.4)), showed higher prediction accuracy 

(hit rates) ranging between 83 and 92%. Both the baseline and 2080s ecosystem projections also 

qualitatively agree with the results for this region from an earlier study (Wang et al. 2012a) that 

project an increase in the bunchgrass and ponderosa zone at lower elevations (corresponding to 

our FBP fuel types 0-1a and C-7) and in the interior cedar hemlock zone at medium elevations 

(corresponding to our FBP C-5 fuel type). The cedar–hemlock vegetation complex is not 

explicitly defined as a fuel type in the Canadian Fire Behavior Prediction System, although 

Canadian fire behaviour specialists have determined that the fire behaviour in this vegetation 

type is similar to the C-5 fuel type. These evaluations suggested that the random forest (RF) 

projections were acceptable for our research objectives – to evaluate the effects of plausible 

changes in fuel conditions on burn probability. 

However, it is important to note that the spatial patterns of fuels are simpler for the 

baseline than observed periods. This is because the observed fuels are strongly influenced by 

fine-scale anthropogenic land-use practices and natural disturbances (Fig. 2a) whereas the 

baseline fuels grid (Fig. 3) represents the expected fuel and vegetation pattern under broad-scale 

baseline climate conditions. The baseline fuels grid is also significantly different from that of the 

2080s where most of the C-3 fuels in the baseline were replaced by C-5 (Fig. 3). 
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Table S3.1. Bioclimate variables, followed by abbreviations, used in the regression tree 
modelling 

Elevation elev Mean annual 
precipitation 

MAP Hargreaves climatic 
moisture deficit 

NEW_CMD

Radiation rad Mean 
summerB 

precipitation 

MSP Degree-days <0°C, 
chilling degree-days 

DD01 

Slope slp Mean winterC 
temperature 

TAVG_WT Degree-days >5°C, 
growing degree-days 

DD51 

Topographic index tpi Mean summer 
temperature 

TAVG_SM Extreme min. 
temperature over 30 
years 

EMT 

Mean annual 
temperature 

MAT Winter 
precipitation  

PPT_WT No. of frost-free days NFFD 

Mean warmest 
month temperature 
(July) 

MWMT Summer 
precipitation  

PPT_SM Precipitation as snow PAS 

Mean coldest 
month temperature 
(January) 

MCMT Climatic 
moisture index 

NEW_CMI Hargreaves reference 
evaporation 

E_REF 

ContinentalityA TD Summer CMI  NEW_CMIJJA Potential 
evapotranspiration 

PET 

ATD = MWMT – MCMT. 
BSummer = June–August. 
CWinter = December–February. 
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Table S3.2. Crosswalk between BC Biogeoclimatic subzones, US level 4 ecoregion units and 

FBP System fuel types 

FBP System 

fuel type 

BC biogeoclimatic subzones and US level 4 ecoregion units 

C-3 BC: ESSFdc, ESSFdcp, ESSFdk, ESSFdv, ESSFdvp, ESSFmm, ESSFmmp, 

ESSFmw, ESSFmwp, ESSFvc, ESSFvcp, ESSFwc, ESSFwcp, ESSFwk, 

ESSFwm, ESSFwmp, ESSFxc, ESSFxcp, ESSFxv ,IDFdk, IDFdm, IDFmw, 

IDFun, IDFww 

US: 15x, 15y, 77d, 77g 

C-5 BC: CDFmm, CWHdm, CWHds, CWHms, CWHvm, CWHvm, CWHxm , 

ICHmk, ICHmw, ICHvk, ICHwk, ICHmw, MHmm, MSdc, MSdk, MSdm, 

MSun, MSxk, MSxv, SBPSmk, SBPSxc, SBSdw, SBSmc, SBSmm, SBSun 

US: SA1, SA2, 2a, 2b, 2c, 2d, 2e, 2f, 15w, 77a, 77b 

C-7 BC: ICHdk, ICHdw, ICHxw, IDFxh, IDFxm, IDFxw IDFxwa, IDFxwb, PPdh, 

PPxh 

US: 15g, 15r, 15u, 77e, 77f 

O-1a BC: BGxh, BGxw, BGxw  

US: 10a ,10d, 10m, 15s 

Non-fuel BC: A1 ATun ATunp 

US: 15h, 77c 
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Table S3.3. Classification accuracy matrix for the random forest model based on FBP 

System fuel types. Sensitivity represents out-of-bag classification accuracy 

Predicted 
Actual 

Sensitivity 
C-3 C-5 C-7 O-1a 

C-3 10748 578 365 5 0.92 

C-5 659 6449 55 7 0.90 

C-7 373 65 3351 243 0.83 

O-1a 5 1 225 2259 0.91 
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Table S3.4. Classification accuracy matrix summarised by BEC zone 

BG, bunchgrass; CDF, coastal Douglas-fir; CWH, coastal western hemlock; ESSF, Engelmann 

spruce–subalpine fir; ICH, interior cedar–hemlock; IDF, interior Douglas-fir; MH, mountain 

hemlock; MS, montane spruce; PP, ponderosa pine; SBPS, sub-boreal pine–spruce; SBS, sub-

boreal spruce 
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H 

MS PP SBP

S 

SB

S 

P
re

d
ic

te
d

 

10 77

5 

31 0 23 8 0 0 0 0 0 0 0 3 0 0 0.92 

15 29 185

1 

0 0 2 0 0 18 38 16 0 13 17 0 0 0.93 

2 0 0 147

9 

11 0 12 2 0 0 0 0 0 0 0 0 0.98 

77 25 2 12 156

1 

5 0 22 18 0 18 9 8 8 0 0 0.92 

BG 1 2 0 0 129

4 

0 0 0 0 67 0 0 10

2 

0 0 0.88 

CDF 0 0 1 0 0 188 4 0 0 0 0 0 0 0 0 0.97 

CW

H 

0 0 3 3 0 13 1603 19 0 56 93 10 0 0 0 0.89 

ESS

F 

0 5 0 25 0 0 12 4131 256 10 44 195 0 0 67 0.87 

ICH 0 23 0 0 0 0 0 272 229

4 

148 0 52 2 0 62 0.80 

IDF 0 17 0 8 88 0 37 2 144 313

5 

0 190 85 29 15 0.84 

MH 0 0 0 0 0 0 84 35 0 0 479 2 0 0 0 0.80 

MS 0 1 0 9 0 0 2 184 55 141 0 127

6 

0 30 9 0.75 

PP 0 3 0 2 95 0 0 0 3 84 0 0 55

1 

0 0 0.75 

SBP

S 

0 0 0 0 0 0 0 2 3 25 0 19 0 519 32 0.87 

SBS 0 0 0 0 0 0 0 30 40 3 0 3 0 15 811 0.90 
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Appendix S4. Examples of projected changes in monthly average temperature and 

precipitation between baseline (1961-90) and 2080s (2071-2100) periods at representative 

weather stations in the three fire zones 

Spring and summer temperatures are projected to increase by 3–4°C by the 2080s. Precipitation 

is projected to increase in spring and decrease in late summer (August). These temperature 

changes are close to the median values, as calculated for an ensemble of 30 GCM projections 

compiled by the Pacific Climate Impacts Consortium for this region (http://www.plan2adapt.ca/, 

accessed 18 February 2014) where the 30 members are produced by 15 different GCMs each 

using one run of the A2 and B1 emissions scenarios. These projected changes in climate drive the 

changes in fuels, fire weather ignitions in this study 

Location  Average monthly temperature (°C) Average monthly precipitation (mm) 
(Fire zone)  A M J J A S O A M J J A S O 

Lumby 1961–90 7.2 11.3 15.2 17.6 17.3 12.6 6.2 41.8 61.8 72.1 58.8 48.3 46.4 42.8 

559 m 2070–2100 10.1 15.2 18.4 21.7 21.3 16.0 9.0 56.7 78.6 91.7 59 41.9 50.5 65.4 

(MTF) ∆ 2.9 4.0 3.3 4.1 4.0 3.5 2.8 14.9 16.8 19.6 0.2 –6.4 4.1 22.6 

       
Princeton 1961–90 6.4 10.7 14.8 17.6 17.5 12.8 6.6 18.1 23.4 29.5 28.6 25.6 21.5 20.5 

701 m 2071–2100 9.7 14.0 17.7 22.0 21.8 16.9 9.4 19.5 31.7 40.8 27.7 19.3 26.9 30.7 

(GDF) ∆ 3.3 3.3 2.9 4.4 4.3 4.1 2.8 1.4 8.3 11.3 –0.9 –6.3 5.4 10.2 

       
Brenda 
Mines 

1961–90 2.0 6.6 10.7 13.9 13.9 9.2 3.6 36.6 47.3 44.7 38.9 38.6 36.9 41.4 

1520 m 2071–2100 5.2 10.0 13.5 17.2 18.2 13.2 6.5 45.8 68.5 68.5 57.5 33.6 41.6 62.1 

(SAF) ∆ 3.2 3.4 2.8 3.3 4.3 4.1 2.9 9.2 21.2 23.8 18.6 –5.0 4.7 20.7 
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Appendix S5. Modelling the number of ignitions 

Using a stepwise procedure, we fitted a generalised linear model to the annual number of fires >3 

ha (S1) and fire weather variables (noon daily temperature, relative humidity, wind speed, 

precipitation in the previous 24 h, and the six codes or indexes of the FWI System) and their 

quadratic terms, recorded during 1987–2009; variables were averaged across 12 selected weather 

stations (see Fig. 2c) by fire season and for each summer month (June–August). Weather stations 

were selected that had continuous records, were distributed evenly across the study area, and 

covered all three fire zones; station elevations ranged between 472 and 1476 m with an average 

of 1013 m. The best predictions were obtained with a Poisson regression model with mean 

temperature and mean July drought code (DC) values as explanatory variables (variance 

explained = 53%; see Parks et al. 2012).  

A bootstrap sampling approach was applied to the Poisson model predictions to generate 

data for the baseline and 2080s. We first randomly selected 12 locations (equivalent to the 

number of weather stations used for the observed period) from the 188-location dataset simulated 

with BioSIM, and then calculated the monthly mean temperature and DC values in July for each 

of the 30 years over all sampled weather stations. Second, we made 30 estimates of the annual 

ignition number using the Poisson predictive models. This procedure (drawing another 12 

random locations) was repeated 1000 times, generating 1000 × 30 ignition numbers for each time 

period. These were incorporated into Burn-P3 as frequency distributions of the annual number of 

escaped fires. 
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Appendix S6. Fire size (ha) distributions (kernel density curves, log-scale) obtained from 
Burn3 simulations for the baseline and 2080s periods, the latter modelled with changing 

Fuels, Weather, and Ignitions factors and their combinations (F, W, I, F × W, F × I, W × I, 
F × W × I) 

 

 

 

 


