Supplementary material

Propagation probability and spread rates of self-sustained smouldering fires under controlled moisture content and bulk density conditions

Nuria Prat-Guitart ${ }^{4, E}$, Guillermo Rein ${ }^{B}$, Rory M. Hadden ${ }^{C}$, Claire M. Belcher ${ }^{D}$ and Jon M. Yearsley ${ }^{A}$
${ }^{\text {A }}$ School of Biology and Environmental Science, Earth Institute, University College Dublin, Dublin D4, Republic of Ireland.
${ }^{\mathrm{B}}$ Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK.
${ }^{\text {C}}$ School of Engineering, University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK.

DwildFIRE Lab, Hatherly Laboratories, University of Exeter, Exeter EX4 4PS, UK.
${ }^{\text {E }}$ Corresponding author. Email: prat.nur@gmail.com

Nomenclature

$c_{w} \quad$ Specific heat of water $\left(\mathrm{kJ} \mathrm{kg}^{-1} \mathrm{~K}\right)$
$c_{p} \quad$ Specific heat of peat $\left(\mathrm{kJ} \mathrm{kg}^{-1} \mathrm{~K}\right)$
$E \quad$ Energy required to dry and heat a mass of peat sample $\left(\mathrm{kJ} \mathrm{kg}^{-1}\right)$
$E^{\prime} \quad$ Total energy required to dry and heat an entire sample (kJ)
$E^{\prime \prime} \quad$ Energy required to dry and heat a unit volume of peat $\left(\mathrm{kJ} \mathrm{cm}^{-3}\right)$
$E_{w} \quad$ Energy required to heat and dry a mass of water $\left(\mathrm{kJ} \mathrm{kg}^{-1}\right)$
$E_{p} \quad$ Energy required to heat a mass of peat $\left(\mathrm{kJ} \mathrm{kg}^{-1}\right)$
$L_{w} \quad$ Latent heat of water evaporation $\left(\mathrm{kJ} \mathrm{kg}^{-1}\right)$
$p \quad$ Mass of dry peat in the peat sample (kg)
$\rho \quad$ Bulk density $\left(\mathrm{kg} \mathrm{m}^{-3}\right)$
$T_{0} \quad$ Ambient temperature (K)
$T_{1} \quad$ Temperature of water evaporation at ambient pressure (K)
$T_{2} \quad$ Temperature of the start of peat thermal decomposition to char (K)
$t^{L} \quad$ Time when the leading edge of the smouldering front reach a pixel (h)
$w \quad$ Mass of water in the peat sample (kg)
$\omega \quad$ Peat sample volume $\left(\mathrm{cm}^{3}\right)$

Detection of changes in spread rate during long burns

To detect changes in the spread rate during long burns (defined as burns lasting more than 7 h), we first calculated the median t^{L} for groups of pixels between distance x and $x+0.5 \mathrm{~cm}$ from the igniter that were more than 2 cm from the sides of the burnbox and more than 6 cm from the igniter (T), and then analyse the variation of T along the x-direction. To avoid issues of autocorrelation we analysed the spatial relationship between subsets T in each experimental burn (Legendre and Legendre 2000). Gaussian and Spherical spatial semivariogram models were fitted. Both models indicated no spatial autocorrelation beyond 1 cm (semviariogram range) for all experimental burns. We then selected values of T with 1 cm separation in distance, x. We fitted the following linear model:

$$
\begin{equation*}
T_{j}=\beta_{\delta 0}+\beta_{\delta 1} x_{j}+\beta_{\delta 2} x_{j}^{2}+\varepsilon_{j} \tag{S1}
\end{equation*}
$$

where T_{j} is the median of t^{L} for the group of pixels corresponding to the distance x_{j} and ε_{j} is a residual, assumed to be taken from a normal distribution. The coefficient of the quadratic term, $\beta_{\delta 2}$, is expected to be zero if spread is constant. The hypothesis $\beta_{\delta 1}=0$ was tested using F-tests.

Estimation of energy required for smouldering combustion of peat

Table S1. Summary of the moisture evaporation tests for peat conditions that sustained smouldering fires for more than $\mathbf{7 h}$.

Test is the number of moisture evaporation test, $M C$ treatment is the initial moisture content of the peat sample at the start of the experiment, ρ is the bulk density of the peat sample, time is the number of hours since the start of the test, propagation indicates if smouldering propagation was self-sustained (\mathbf{Y}) or not (N) according to Fig. S2, MC is the \% moisture content estimated at each hour according to the mass loss rate of the peat sample, s.d. is the standard deviation of $M C$.
Test $M C$ treatment $\quad \rho \quad$ time propagation $M C \quad$ s.d.

(num)	(\%)	$\left(\mathrm{kg} \mathrm{m}^{-3}\right)$	(hours)	$(\mathbf{Y} / \mathrm{N})$	(\%)	(\%)
1	100	129	2	Y	100.2	0.1
1	100	129	4	Y	99.7	0.1
1	100	129	6	\boldsymbol{Y}	99.0	0.1
1	100	129	8	\boldsymbol{Y}	98.3	0.1
1	100	129	10	\boldsymbol{Y}	98.0	0.0
1	100	129	12	N	97.6	0.0
1	100	129	14	N	97.3	0.1
2	100	132	2	Y	101.0	0.0
2	100	132	4	\boldsymbol{Y}	100.9	0.0
2	100	132	6	\boldsymbol{Y}	100.7	0.0
2	100	132	8	\boldsymbol{Y}	100.2	0.1
2	100	132	10	\boldsymbol{Y}	99.7	0.1
2	100	132	12	N	99.1	0.1
2	100	132	14	N	98.6	0.1
3	100	138	2	\boldsymbol{Y}	101.7	0.3
3	100	138	4	\boldsymbol{Y}	102.0	0.0
3	100	138	6	Y	101.7	0.1
3	100	138	8	\boldsymbol{Y}	101.3	0.0
3	100	138	10	\boldsymbol{Y}	101.1	0.1
3	100	138	12	N	100.7	0.1
3	100	138	14	N	100.3	0.1
4	150	73	2	\boldsymbol{Y}	148.3	0.3
4	150	73	4	Y	147.8	0.2
4	150	73	6	Y	146.7	0.1
4	150	73	8	\boldsymbol{Y}	144.8	0.1
4	150	73	10	N	144.2	0.1
4	150	73	12	N	143.4	0.1
4	150	73	14	N	143.0	0.1
5	150	81	2	\boldsymbol{Y}	152.2	0.1
5	150	81	4	Y	152.5	0.0
5	150	81	6	\boldsymbol{Y}	152.4	0.0
5	150	81	8	\boldsymbol{Y}	152.1	0.0
5	150	81	10	N	151.8	0.1
5	150	81	12	N	151.5	0.1
5	150	81	14	N	151.0	0.1
6	150	82	2	Y	150.9	0.0
6	150	82	4	\boldsymbol{Y}	150.7	0.1
6	150	82	6	\boldsymbol{Y}	150.2	0.1
6	150	82	8	\boldsymbol{Y}	149.6	0.1
6	150	82	10	N	149.1	0.1
6	150	82	12	N	148.8	0.1
6	150	82	14	N	148.3	0.1

Fig. S1. Expected fraction of peat burnt $\left(P_{y D}\right)$ for peats with 150% moisture content (Eqn S 1 , Table S 1). Panels are predictions for distance D away from the ignition region of (a) 6 cm , (b) 8 cm , (c) 10 cm and (d) 12 cm . Line shows mean prediction and shaded areas are quantile $=25 \%$ and quantile $=75 \%$. Points are fractions of peat burnt (y) along a transect at distance D.

The energy required to dry and heat a mass of peat sample (E), the entire peat sample (E^{\prime}) and a unit volume ($E^{\prime \prime}$) were estimated for each combination of peat moisture content ($M C$) and bulk density (ρ). The energy required to heat and dry the water from the peat is

$$
\begin{equation*}
E_{w}=\left(c_{w}\left(T_{1}-T_{0}\right)\right) L_{w}\left(\frac{M C}{100+M C}\right) \tag{S2}
\end{equation*}
$$

where c_{w} is a constant $4.186 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}, T_{0}$ is assumed to be constant at $288.15 \mathrm{~K}, T_{l}$ is assumed to be 373.15 K and L_{w} is $2260 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$ (Huang et al., 2014). The energy required to heat the peat from T_{0} to T_{2} is

$$
\begin{equation*}
E_{p}=\left(c_{p}\left(T_{2}-T_{1}\right)\right)\left(1-\frac{M C}{100+M C}\right) \tag{S3}
\end{equation*}
$$

where c_{p} is a constant $1.84 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}, T_{0}$ is assumed to be constant at 288 K and T_{2} is 423 K , which is considered the temperature at which peat starts the thermal decomposition to char (Rein 2013). E_{p} was calculated for a higher T_{2} (473 K), however the temperature increase of 50 K did not have a qualitative effect on E (Eqn S4). The total energy required to evaporate all water from a unit mass of peat sample and heat the peat to a temperature T_{2} is

$$
\begin{equation*}
E=E_{w}+E_{p} \tag{S4}
\end{equation*}
$$

The values were estimated for each moisture content treatment (Fig. S2).

Fig. S2. Energy required (E, Eqn S3) to heat 1 kg of peat to 423 K as a function of peat moisture content.

The energy required to start thermal decomposition of the entire sample is

$$
\begin{equation*}
E^{\prime}=E_{w} \times w+E_{p} \times p \tag{S5}
\end{equation*}
$$

where p is the mass of peat and w is the mass of water of the entire sample. Assuming homogeneous peat conditions within the burnbox, the energy required to start thermal decomposition per unit volume is

$$
\begin{equation*}
E^{\prime \prime}=\frac{E^{\prime}}{\omega} \tag{S6}
\end{equation*}
$$

where ω is a constant volume of $1800 \mathrm{~cm}^{3}$. The values were estimated for each peat moisture content and bulk density treatment (Fig. S3).

Fig. S3. Energy required per unit volume of peat sample ($E^{\prime \prime}$, Eqn S5) as a function of peat bulk density. Circle, triangle, square, diamond and star correspond to 25%, $100 \%, 150 \%, 200 \%$ and 250% moisture content, respectively.

References

Huang X, Rein G (2014) Smouldering combustion of peat: inverse modelling of the drying and the thermal and decomposition kinetics. Combustion and Flame 161, 1633-1644.

Legendre P, Legendre L (2000) Numerical ecology (Elsevier: Amsterdam)

Rein G (2013) Smouldering Fires and Natural Fuels. In 'Fire phenomena and the earth system: an interdisciplinary approach to fire sicence'. (Eds CM Belcher) pp. 1534. (Wiley-Blackwell: West Sussex)

