International Journal of Wildland Fire 25(4), 456–465 doi: 10.1071/WF15103_AC © IAWF 2016

Supplementary material

Propagation probability and spread rates of self-sustained smouldering fires under controlled moisture content and bulk density conditions

Nuria Prat-Guitart^{A,E}, Guillermo Rein^B, Rory M. Hadden^C, Claire M. Belcher^D and Jon M. Yearsley^A

^ASchool of Biology and Environmental Science, Earth Institute, University College Dublin, Dublin D4, Republic of Ireland.

^BDepartment of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK.

^CSchool of Engineering, University of Edinburgh, The King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK.

^DwildFIRE Lab, Hatherly Laboratories, University of Exeter, Exeter EX4 4PS, UK.

^ECorresponding author. Email: prat.nur@gmail.com

Nomenclature

\mathcal{C}_W	Specific heat of water (kJ kg ^{-1} K)
Ср	Specific heat of peat (kJ kg ⁻¹ K)
Ε	Energy required to dry and heat a mass of peat sample (kJ kg ⁻¹)
E'	Total energy required to dry and heat an entire sample (kJ)
<i>E</i> "	Energy required to dry and heat a unit volume of peat (kJ cm ⁻³)
E_w	Energy required to heat and dry a mass of water (kJ kg ⁻¹)
E_p	Energy required to heat a mass of peat (kJ kg ⁻¹)
L_w	Latent heat of water evaporation (kJ kg ⁻¹)
р	Mass of dry peat in the peat sample (kg)
ρ	Bulk density (kg m ⁻³)
T_0	Ambient temperature (K)
T_{l}	Temperature of water evaporation at ambient pressure (K)
T_2	Temperature of the start of peat thermal decomposition to char (K)
t^L	Time when the leading edge of the smouldering front reach a pixel (h)
w	Mass of water in the peat sample (kg)
ω	Peat sample volume (cm ³)

Detection of changes in spread rate during long burns

To detect changes in the spread rate during long burns (defined as burns lasting more than 7 h), we first calculated the median t^L for groups of pixels between distance x and x + 0.5 cm from the igniter that were more than 2 cm from the sides of the burnbox and more than 6 cm from the igniter (T), and then analyse the variation of T along the x-direction. To avoid issues of autocorrelation we analysed the spatial relationship between subsets T in each experimental burn (Legendre and Legendre 2000). Gaussian and Spherical spatial semivariogram models were fitted. Both models indicated no spatial autocorrelation beyond 1 cm (semviariogram range) for all experimental burns. We then selected values of T with 1 cm separation in distance, x. We fitted the following linear model:

$$T_j = \beta_{\delta 0} + \beta_{\delta 1} x_j + \beta_{\delta 2} x_j^2 + \varepsilon_j \tag{S1}$$

where T_j is the median of t^L for the group of pixels corresponding to the distance x_j and ε_j is a residual, assumed to be taken from a normal distribution. The coefficient of the quadratic term, $\beta_{\delta 2}$, is expected to be zero if spread is constant. The hypothesis $\beta_{\delta 1} = 0$ was tested using F-tests.

Estimation of energy required for smouldering combustion of peat

Table S1. Summary of the moisture evaporation tests for peat conditions that sustained smouldering fires for more than 7 h.

Test is the number of moisture evaporation test, MC treatment is the initial moisture content of the peat sample at the start of the experiment, ρ is the bulk density of the peat sample, time is the number of hours since the start of the test, propagation indicates if smouldering propagation was self-sustained (Y) or not (N) according to Fig. S2, MC is the % moisture content estimated at each hour according to the mass loss rate of the peat sample, s.d. is the standard deviation of MC.

(num)	(%)	(kg m^{-3})	(hours)	(<i>Y</i> /N)	(%)	(%)
1	100	129	2	Y	100.2	0.1
1	100	129	4	Y	<i>99.7</i>	0.1
1	100	129	6	Y	<i>99.0</i>	0.1
1	100	129	8	Y	<i>98.3</i>	0.1
1	100	129	10	Y	98.0	0.0
1	100	129	12	Ν	97.6	0.0
1	100	129	14	Ν	97.3	0.1
2	100	132	2	Y	101.0	0.0
2	100	132	4	Y	100.9	0.0
2	100	132	6	Y	100.7	0.0
2	100	132	8	Y	100.2	0.1
2	100	132	10	Y	<i>99.</i> 7	0.1
2	100	132	12	Ν	99.1	0.1
2	100	132	14	Ν	98.6	0.1
3	100	138	2	Y	101.7	0.3
3	100	138	4	Y	102.0	0.0
3	100	138	6	Y	101.7	0.1
3	100	138	8	Y	101.3	0.0
3	100	138	10	Y	101.1	0.1
3	100	138	12	Ν	100.7	0.1
3	100	138	14	Ν	100.3	0.1
4	150	73	2	Y	148.3	0.3
4	150	73	4	Y	147.8	0.2
4	150	73	6	Y	146.7	0.1
4	150	73	8	Y	144.8	0.1
4	150	73	10	Ν	144.2	0.1
4	150	73	12	Ν	143.4	0.1
4	150	73	14	Ν	143.0	0.1
5	150	81	2	Y	152.2	0.1
5	150	81	4	Y	152.5	0.0
5	150	81	6	Y	152.4	0.0
5	150	81	8	Y	152.1	0.0
5	150	81	10	Ν	151.8	0.1
5	150	81	12	Ν	151.5	0.1
5	150	81	14	Ν	151.0	0.1
6	150	82	2	Y	150.9	0.0
6	150	82	4	Y	150.7	0.1
6	150	82	6	Y	150.2	0.1
6	150	82	8	Y	149.6	0.1
6	150	82	10	N	149.1	0.1
6	150	82	12	Ν	148.8	0.1
6	150	82	14	Ν	148.3	0.1

Fig. S1. Expected fraction of peat burnt (P_{yD}) for peats with 150% moisture content (Eqn S1, Table S1). Panels are predictions for distance *D* away from the ignition region of (a) 6 cm, (b) 8 cm, (c) 10 cm and (d) 12 cm. Line shows mean prediction and shaded areas are quantile = 25% and quantile = 75%. Points are fractions of peat burnt (*y*) along a transect at distance *D*.

The energy required to dry and heat a mass of peat sample (*E*), the entire peat sample (*E'*) and a unit volume (*E''*) were estimated for each combination of peat moisture content (*MC*) and bulk density (ρ). The energy required to heat and dry the water from the peat is

$$E_{w} = \left(c_{w}(T_{1} - T_{0})\right) L_{w}\left(\frac{MC}{100 + MC}\right)$$
(S2)

where c_w is a constant 4.186 kJ kg⁻¹ K⁻¹, T_0 is assumed to be constant at 288.15 K, T_1 is assumed to be 373.15 K and L_w is 2260 kJ kg⁻¹ K⁻¹ (Huang et al., 2014). The energy required to heat the peat from T₀ to T₂ is

$$E_p = \left(c_p(T_2 - T_1)\right) \left(1 - \frac{MC}{100 + MC}\right)$$
(83)

where c_p is a constant 1.84 kJ kg⁻¹ K⁻¹, T_0 is assumed to be constant at 288 K and T_2 is 423 K, which is considered the temperature at which peat starts the thermal decomposition to char (Rein 2013). E_p was calculated for a higher T_2 (473 K), however the temperature increase of 50 K did not have a qualitative effect on *E* (Eqn S4). The total energy required to evaporate all water from a unit mass of peat sample and heat the peat to a temperature T₂ is

$$E = E_w + E_p \tag{S4}$$

The values were estimated for each moisture content treatment (Fig. S2).

Fig. S2. Energy required (E, Eqn S3) to heat 1 kg of peat to 423 K as a function of peat moisture content.

The energy required to start thermal decomposition of the entire sample is

$$E' = E_w \times w + E_p \times p \tag{S5}$$

where p is the mass of peat and w is the mass of water of the entire sample. Assuming homogeneous peat conditions within the burnbox, the energy required to start thermal decomposition per unit volume is

$$E'' = \frac{E'}{\omega} \tag{S6}$$

where ω is a constant volume of 1800 cm³. The values were estimated for each peat moisture content and bulk density treatment (Fig. S3).

Fig. S3. Energy required per unit volume of peat sample (*E*", Eqn S5) as a function of peat bulk density. Circle, triangle, square, diamond and star correspond to 25%, 100%, 150%, 200% and 250% moisture content, respectively.

References

Huang X, Rein G (2014) Smouldering combustion of peat: inverse modelling of the drying and the thermal and decomposition kinetics. *Combustion and Flame* **161**, 1633–1644.

Legendre P, Legendre L (2000) Numerical ecology (Elsevier: Amsterdam)

Rein G (2013) Smouldering Fires and Natural Fuels. In 'Fire phenomena and the earth system: an interdisciplinary approach to fire sicence'. (Eds CM Belcher) pp. 15–34. (Wiley-Blackwell: West Sussex)