International Journal of Wildland Fire 25(6), 679–684 doi: 10.1071/WF5126_AC © IAWF 2016

Supplementary material

Models for predicting fire ignition probability in graminoids from boreotemperate moorland ecosystems

Victor M. Santana^{A,B,C} and Rob H. Marrs^A

^ASchool of Environmental Sciences, University of Liverpool, Liverpool L69 3GP, UK.

^BPresent address: Department of Plant Biology, Faculty of Biology, University of Barcelona, avinguda Diagonal, 643, 08028 Barcelona, Spain.

^CCorresponding author. Email: vm.santana@ua.es

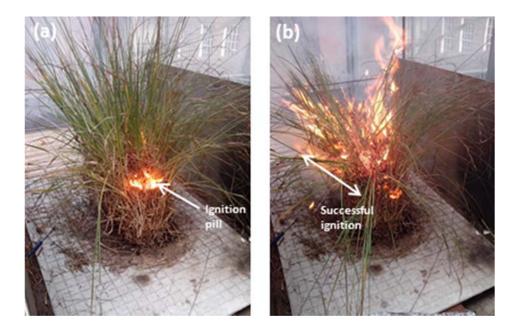


Fig. S1. Grass square used in the ignition tests: (a) the beginning of the test when the ignition source is started at the front of the square, and (b) a successful ignition where the flame produced reached the bottom of the square.

Table S1. Comparison of fuel moisture content (FMC) at which 50% of ignitions were successful (M₅₀), and maximum FMC at which successful ignition occurred (M_{max}) for different fuel types in (*a*) British moorlands and heathlands, and (*b*) other ecosystems

Values were obtained after the application of flaming and smouldering ignition sources.

(a) British Moors

Fuel type	Species	M_{50}		M _{max}		
		Flaming	Smouldering	Flaming	Smouldering	Reference
Peat/litter	Calluna vulgaris	15.2	26.9	12.8	33.2	Santana and Marrs 2014
	Vaccinium myrtillus	_	25.1	_	51.3	Santana and Marrs 2014
	Empetrum nigrum	_	19.1	_	36.2	Santana and Marrs 2014
	Ulex europaeus	_	35.1	_	52.9	Santana and Marrs 2014
	Sphagnum spp.	_	54.4	_	71.4	Santana and Marrs 2014
	Peat	_	21.6	_	46.1	Santana and Marrs 2014
Calluna vegetation	20% of dead fuel proportion	29.8	19	45.7	24.4	Santana and Marrs 2014
	40% of dead fuel proportion	31.5	28.4	44.3	41.1	Santana and Marrs 2014
	60% of dead fuel proportion	29.8	35	50.4	44.5	Santana and Marrs 2014
Graminoid species	Eriophorum angustifolium	47.8	_	53.7	_	This work
	Eriphorum vaginatum	36.1	-	52.7	_	This work
	Molinia caerulea	48.1	_	56.3	_	This work
(b) Other ecosystems						
Greek grasslands	Avena barbata Pott. ex Link	38	_	_	_	Dimitrakopoulos et al. (2010)
Western Australian spinifex grasslands	<i>Triodia basedowii</i> E. Pritz. and <i>T. schinzii</i> (Henrard) Lazarides	35	_	-	_	Burrows et al. (1991)
Indonesian grasslands	Imperata cylindrica (L.) Raeuschel	35.4	_	-	-	de Groot <i>et al.</i> (2005)

References

- Burrows N, Ward B, Robinson A (1991) Fire behavior in spinifiex fuels on the Gibson Desert Nature Reserve, Western Australia. *Journal of Arid Environments* 20, 189–204.
- de Groot WJ, Wardati, Wang Y (2005) Calibrating the Fine Fuel Moisture Code for grass ignition potential in Sumatra, Indonesia. *International Journal of Wildland Fire* **14**, 161–168. doi:10.1071/WF04054
- Dimitrakopoulos AP, Mitsopoulos ID, Gatoulas K (2010) Assessing ignition probability and moisture of extinction in a Mediterranean grass fuel. *International Journal of Wildland Fire* **19**, 29–34. doi:10.1071/WF08124
- Santana VM, Marrs RH (2014) Flammability properties of British heathland and moorland vegetation: models for predicting fire ignition. *Journal of Environmental Management* **139**, 88–96. doi:10.1016/j.jenvman.2014.02.027