Supplementary material

Estimating post-fire debris-flow hazards prior to wildfire using a statistical analysis of historical distributions of fire severity from remote sensing data

Dennis M. Staley^{A,D}, Anne C. Tillery^B, Jason W. Kean^A, Luke A. McGuire^C, Hannah E. Pauling^A, Francis K. Rengers^A and Joel B. Smith^A

^AU.S. Geological Survey, Landslide Hazards Program, Golden, CO 80422, USA.

^BU.S. Geological Survey, New Mexico Water Science Center, Albuquerque, NM 87113, USA.

^CUniversity of Arizona, Department of Geosciences, Tucson, AZ 85721, USA.

^DCorresponding author. Email: dstaley@usgs.gov

Table S1. Comparison of simulated and observed burn severity classes for the 8 test locations. Obs = observed soil burn severity, Sim = simulated soil burn severity, L = low burn severity, H/M = high or moderate soil burn severity.

Fire	<u>Obs = L,</u> <u>Sim = L</u> <u>(%)</u>	<u>Obs = L, Sim</u> <u>= H/M (%)</u>	<u>Obs = H/M,</u> <u>Sim = L (%)</u>	<u>Obs = H/M,</u> <u>Sim = H/M (%)</u>	<u>%</u> <u>Correct</u>	<u>% Incorrect</u>
	_	_	_	_		_
Blue Cut (2016)	18.3%	13.0%	23.3%	45.5%	63.8%	36.2%
First Creek (2015)	18.2%	17.0%	28.9%	35.9%	54.1%	45.9%
Gap (2016)	31.4%	56.2%	3.4%	9.0%	40.4%	59.6%
Hayden Pass (2016)	0.0%	0.0%	17.6%	82.4%	82.4%	17.6%
Junkins (2016)	2.4%	3.2%	32.8%	61.5%	64.0%	36.0%
Pony (2016)	3.2%	2.5%	61.6%	32.7%	35.9%	64.1%
San Gabriel Complex						
(2016)	0.0%	0.0%	19.8%	80.2%	80.2%	19.8%
Wolverine (2015)	3.3%	3.8%	21.0%	71.9%	75.2%	24.8%
Totals	11.7%	15.7%	19.7%	52.9%	64.6%	35.4%

Fig. S1. Processing steps for defining the statistical distribution of fire severity for each Existing Vegetation Type (EVT) and estimating potential debris-flow hazards, including likelihood, volume, and rainfall intensity-duration threshold. dNBR = differenced normalized burn ratio, BARC4 = burned area reflectance classification (4 classes).

Fig. S2. Comparison of estimated likelihood for a storm with a peak 15-minute rainfall intensity of 24 mmh⁻¹ between model runs using observed fire severity data (A), and simulated fire severity data (B) at $P_{dsim} = 0.95$.

Fig. S3. Comparison of estimated volume (in cubic meters, m^3) for a storm with a peak 15-minute rainfall intensity of 24 mmh⁻¹ between model runs using observed fire severity data (A), and simulated fire severity data (B) at $P_{dsim} = 0.95$.

Fig. S4. Comparison of estimated 15-minute rainfall intensity duration threshold, in mmh⁻¹, between model runs using observed fire severity data (A), and simulated fire severity data (B) at $P_{dsim} = 0.95$.

Fig. S5. Simulation results for three canyon above suburban Salt Lake City at three fire severity scenarios: $P_{dsim} = 0.5$ (A, B, and C), $P_{dsim} = 0.75$ (D, E, and F), and $P_{dsim} = 0.9$ (G, H, and I). The three canyons from north to south, are Ferguson Canyon, North Fork Deaf Smith Canyon, and Deaf Smith Canyon. Simulated likelihood (H_L) for a storm with a peak 15-minute intensity of 12 mmh⁻¹ (A, D, and G), simulated volume (H_V), in m³, for a storm with a peak 15-minute intensity of 12 mmh⁻¹ (B, E, and H), and simulated 15-minute rainfall intensity-duration threshold (H_{T15}), in mmh⁻¹ (C, F, and I).

Fig. S6. Simulation results for three canyon above suburban Salt Lake City at three fire severity scenarios: $P_{dsim} = 0.5$ (A, B, and C), $P_{dsim} = 0.75$ (D, E, and F), and $P_{dsim} = 0.9$ (G, H, and I). The three canyons from north to south, are Ferguson Canyon, North Fork Deaf Smith Canyon, and Deaf Smith Canyon. Simulated likelihood (H_L) for a storm with a peak 15-minute intensity of 36 mmh⁻¹ (A, D, and G), simulated volume (H_V), in m³, for a storm with a peak 15-minute intensity of 36 mmh⁻¹ (B, E, and H), and simulated 15-minute rainfall intensity-duration threshold (H_{T15}), in mmh⁻¹ (C, F, and I).