Supplementary material

Loss of potential bat habitat following a severe wildfire: a model-based rapid assessment

Luciano Bosso^{A,E}, *Leonardo Ancillotto*^A, *Sonia Smeraldo*^A, *Sara D'Arco*^A, *Antonello Migliozzi*^B, *Paola Conti*^C *and Danilo Russo*^{A,D}

^AWildlife Research Unit, Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università n. 100, I-80055 Portici, Napoli, Italy.

^BLaboratorio di Ecologia Applicata, Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Universita` n. 100, I-80055 Portici, Napoli, Italy.

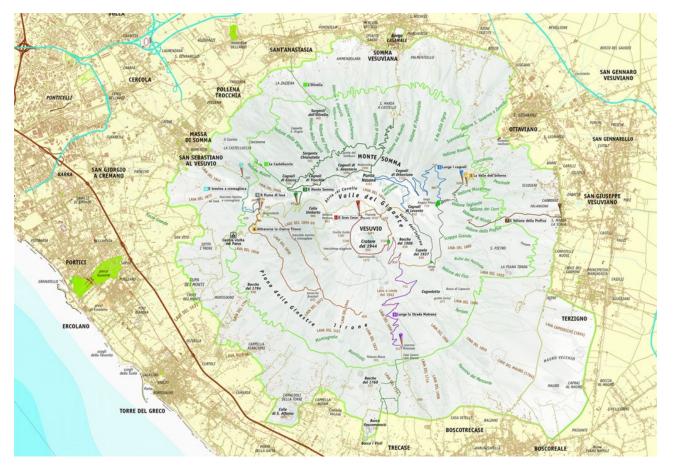
^CEnte Parco Nazionale Del Vesuvio, Via Palazzo del Principe, I-80044 Ottaviano, Napoli, Italy.

^DSchool of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK.

^ECorresponding author. Email: luciano.bosso@unina.it

Species	Foraging habitat	Roosting habitat	
Hypsugo savii	Generalist	Generalist	
Miniopterus schreibersii	Open / Forest edge / Riparian vegetation	Caves	
Myotis emarginatus	Forest / Forest edge	Trees; Buildings	
Myotis nattereri	Forest	Trees	
Nyctalus leisleri	Open space	Trees; Buildings	
Pipistrellus kuhlii	Generalist	Generalist	
Pipistrellus pipistrellus	Generalist	Generalist	
Pipistrellus pygmaeus	Forest edge / Riparian vegetation	Generalist	
Plecotus austriacus	Forest edge	Trees; Buildings	
Rhinolophus ferrumequinum	Forest edge / Forest	Caves; Buildings	
Rhinolophus hipposideros	Forest	Caves; Buildings	
Tadarida teniotis	Open space	Rocks; Buildings	

Table S1. List of bat species found in the Vesuvius National Park (Southern Italy) and their foraging and roosting preferences (e.g. Dietz *et al.* 2009)


Table S2. Number of bat presence records available for analysis and sample sizes of the subset used for the development of Species Distribution Models (SDMs) after spatial autocorrelation analyses

Species	Total	Used to generate SDMs	
Hypsugo savii	394	43	
Miniopterus schreibersii	47	37	
Myotis emarginatus	66	32	
Myotis nattereri	97	30	
Nyctalus leisleri	244	44	
Pipistrellus kuhlii	480	50	
Pipistrellus pipistrellus	178	42	
Pipistrellus pygmaeus	89	21	
Plecotus austriacus	25	19	
Rhinolophus ferrumequinum	94	37	
Rhinolophus hipposideros	312	34	
Tadarida teniotis	131	28	

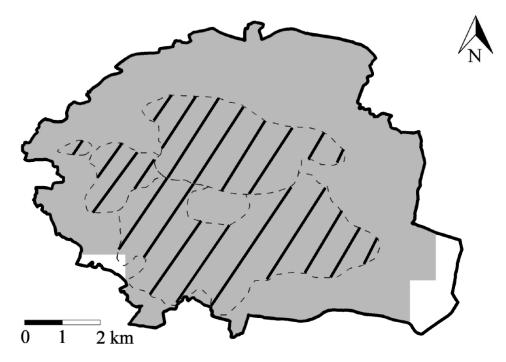
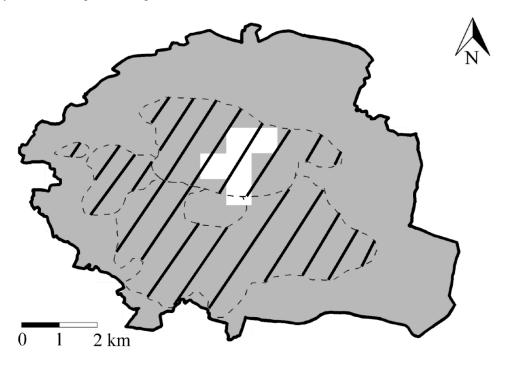
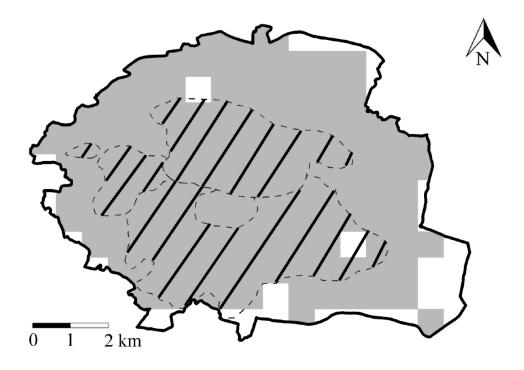
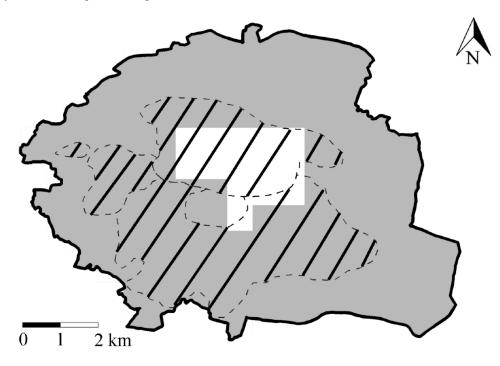
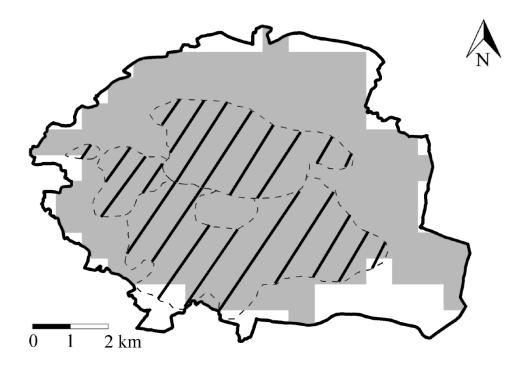

Species	Туре	Ecogeographical Variable	Unit
Hypsugo savii	Habitat	CLC	-
	Climatic	Precipitation of Driest Month	mm
		Precipitation of Warmest Quarter	mm
		Precipitation of Coldest Quarter	mm
Miniopterus schreibersii	Habitat	CLC	-
	Climatic	Max Temperature of Warmest Month	°C
		Mean Temperature of Wettest Quarter	°C
		Precipitation of Driest Quarter	mm
		Precipitation of Warmest Quarter	mm
		Precipitation of Coldest Quarter	mm
Myotis emarginatus	Habitat	CLC	-
	Climatic	Isothermality	%
		Mean Temperature of Driest Quarter	°C
		Precipitation of Warmest Quarter	mm
		Precipitation of Driest Quarter	mm
Myotis nattereri	Habitat	CLC	-
	Climatic	Mean Temperature of Wettest Quarter	°C
		Mean Temperature of Driest Quarter	°C
		Annual Precipitation	mm
		Precipitation of Warmest Quarter	mm
		Precipitation of Coldest Quarter	mm
Nyctalus leisleri	Habitat	CLC	-
2	Topographical	Altitude	m
	Climatic	Mean Diurnal Range	°C
		Mean Temperature of Driest Quarter	°C
		Precipitation of Warmest Quarter	mm
		Precipitation of Driest Quarter	mm
Pipistrellus kuhlii	Habitat	CLC	-
1	Climatic	Isothermality	%
		Precipitation of Driest Month	mm
		Precipitation of Warmest Quarter	mm
		Precipitation of Coldest Quarter	mm
Pipistrellus pipistrellus	Habitat	CLC	-
Γ Γ Γ Γ	Climatic	Mean Temperature of Driest Quarter	°C
	-	Precipitation of Wettest Month	mm
		Precipitation of Driest Month	mm
		Precipitation of Warmest Quarter	mm
		Precipitation of Coldest Quarter	mm
Pipistrellus pygmaeus	Habitat	CLC	-
	Climatic	Precipitation of Driest Month	mm
	euiv	Precipitation of Coldest Quarter	mm

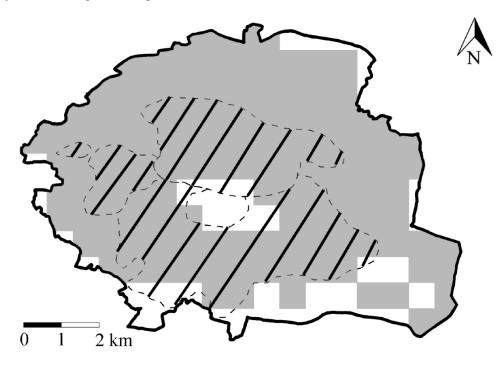
Table S3. List of eco-geographical variables used for each bat species in this study, along with variable type and measurement unit

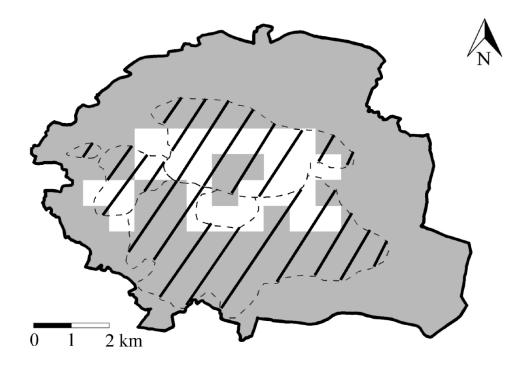

Plecotus austriacus	Habitat	CLC	-
	Climatic	Mean Diurnal Range	°C
		Isothermality	%
		Temperature Annual Range	°C
		Mean Temperature of Driest Quarter	°C
		Precipitation of Warmest Quarter	mm
		Precipitation Seasonality	%
Rhinolophus ferrumequinum	Habitat	CLC	-
	Climatic	Temperature Seasonality	%
		Mean Temperature of Driest Quarter	°C
		Mean Temperature of Wettest Quarter	°C
		Precipitation of Warmest Quarter	mm
		Precipitation of Coldest Quarter	mm
Rhinolophus hipposideros	Habitat	CLC	-
	Climatic	Isothermality	%
		Temperature Seasonality	%
		Precipitation of Warmest Quarter	mm
		Precipitation of Wettest Month	mm
Tadarida teniotis	Habitat	CLC	-
	Topographical	Altitude	m
	Climatic	Precipitation of Driest Quarter	mm
		Precipitation of Warmest Quarter	mm
		Precipitation of Coldest Quarter	mm

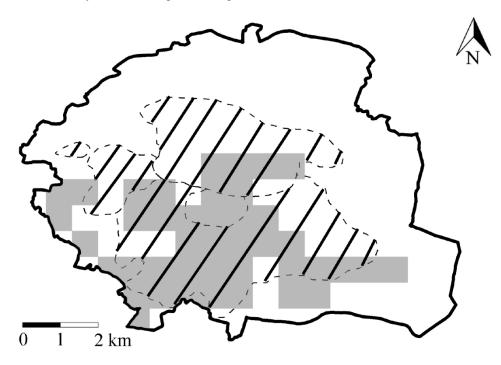

Fig. S1. Map of the Vesuvius National Park. Grey represents the study area, yellow represents agricultural areas; light brown represents urban areas, light green represent roads, red or light blue represents highways (source: http://www.vesuviopark.it).


Fig. S2. Species Distribution Model (SDM) of *M. schreibersii* in the Vesuvius National Park. Binary map scale shows the probability of presence: 0 (white); 1 (grey). Boundaries of the Vesuvius National Park are denoted by the black continuous line; boundaries of the burnt areas are denoted by the black dotted line; and burnt areas are denoted by the black simple hatching.


Fig. S3. Species Distribution Model (SDM) of *P. kuhlii* in the Vesuvius National Park. Binary map scale shows the probability of presence: 0 (white); 1 (grey). Boundaries of the Vesuvius National Park are denoted by the black continuous line; boundaries of the burnt areas are denoted by the black dotted line; and burnt areas are denoted by the black simple hatching.


Fig. S4. Species Distribution Model (SDM) of *P. pipistrellus* in the Vesuvius National Park. Binary map scale shows the probability of presence: 0 (white); 1 (grey). Boundaries of the Vesuvius National Park are denoted by the black continuous line; boundaries of the burnt areas are denoted by the black dotted line; and burnt areas are denoted by the black simple hatching.


Fig. S5. Species Distribution Model (SDM) of *P. pygmaeus* in the Vesuvius National Park. Binary map scale shows the probability of presence: 0 (white); 1 (grey). Boundaries of the Vesuvius National Park are denoted by the black continuous line; boundaries of the burnt areas are denoted by the black dotted line; and burnt areas are denoted by the black simple hatching.


Fig. S6. Species Distribution Model (SDM) of *T. teniotis* in the Vesuvius National Park. Binary map scale shows the probability of presence: 0 (white); 1 (grey). Boundaries of the Vesuvius National Park are denoted by the black continuous line; boundaries of the burnt areas are denoted by the black dotted line; and burnt areas are denoted by the black simple hatching.

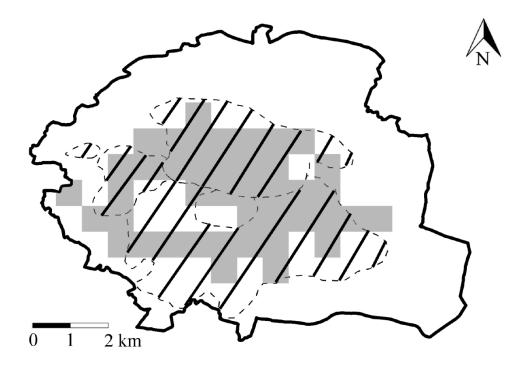

Fig. S7. Species Distribution Model (SDM) of *R. hipposideros* in the Vesuvius National Park. Binary map scale shows the probability of presence: 0 (white); 1 (grey). Boundaries of the Vesuvius National Park are denoted by the black continuous line; boundaries of the burnt areas are denoted by the black dotted line; and burnt areas are denoted by the black simple hatching.

Fig. S8. Species Distribution Model (SDM) of *R. ferrumequinum* in the Vesuvius National Park. Binary map scale shows the probability of presence: 0 (white); 1 (grey). Boundaries of the Vesuvius National Park are denoted by the black continuous line; boundaries of the burnt areas are denoted by the black dotted line; and burnt areas are denoted by the black simple hatching.

Fig. S9. Species Distribution Model (SDM) of *M. emarginatus* in the Vesuvius National Park. Binary map scale shows the probability of presence: 0 (white); 1 (grey). Boundaries of the Vesuvius National Park are denoted by the black continuous line; boundaries of the burnt areas are denoted by the black dotted line; and burnt areas are denoted by the black simple hatching.

Fig. S10. Species Distribution Model (SDM) of *M. nattereri* in the Vesuvius National Park. Binary map scale shows the probability of presence: 0 (white); 1 (grey). Boundaries of the Vesuvius National Park are denoted by the black continuous line; boundaries of the burnt areas are denoted by the black dotted line; and burnt areas are denoted by the black simple hatching.