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Text S1 – LOESS input explanation and example and R code, Sensor DOCLOESS with 
WS77 

1. Load WS77 data log directly from sensor
library(ggplot2)  
head(WS77[,1:4]) 

## # A tibble: 6 x 4 
## date turbidity   TOC  temp 
## <dttm>     <dbl> <dbl> <dbl> 
## 1 2016-12-23 10:47:00      8.89 29.47  8.97 
## 2 2016-12-23 10:42:00      8.17 29.44  9.05 
## 3 2016-12-23 10:37:00      8.64 29.13  8.90 
## 4 2016-12-23 10:32:00      8.51 29.57  9.05 
## 5 2016-12-23 10:27:00      9.64 29.58  9.05 
## 6 2016-12-23 10:22:00      9.05 29.73  9.05 

2. Input data file with pre-calculated error from DOC,grab - DOC,raw sensor
print(err77)

## # A tibble: 26 x 2 
##                   date      err 
##                 <dttm>    <dbl> 
##  1 2016-03-29 12:00:00 41.29281 
##  2 2016-04-11 10:50:00 29.98865 
##  3 2016-04-21 15:46:00 32.29426 
##  4 2016-04-22 12:00:00 31.57618 
##  5 2016-04-23 16:23:00 29.76182 
##  6 2016-04-17 15:47:00 30.88931 
##  7 2016-06-09 14:00:00  1.17622 
##  8 2016-06-10 14:00:00  4.85213 
##  9 2016-06-11 14:00:00  4.55006 
## 10 2016-06-14 14:00:00  5.28279 
## # ... with 16 more rows 

3. Calculate loess smooth model with DOC error (sensor-lab) in WS77, then correct all
sensor values
y.loess <-loess(as.numeric(err)~as.numeric(date), span=0.3, data=err77)
WS77$err<-predict(y.loess, WS77$date)
WS77$corr.TOC <-WS77$TOC-predict(y.loess, WS77$date)
WS77$corr.TOC <-with(WS77, ifelse(corr.TOC<0,0, corr.TOC))
write.csv(WS77,"WS77_corrTOC.csv")

head(subset(WS77[,1:5], is.na(corr.TOC) == FALSE)) 

## # A tibble: 6 x 5 
## date turbidity   TOC  temp corr.TOC 
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## <dttm>     <dbl> <dbl> <dbl>    <dbl> 
## 1 2016-11-16 13:59:00     16.87 59.41 11.98 26.27176 
## 2 2016-11-16 13:54:00     20.89 60.72 11.98 27.57982 
## 3 2016-11-16 13:49:00     18.77 59.94 11.98 26.79788 
## 4 2016-11-16 13:43:00     18.51 59.78 12.06 26.63556 
## 5 2016-11-16 13:38:00     19.72 60.23 11.98 27.08362 
## 6 2016-11-16 13:33:00     17.94 59.49 11.90 26.34168 

4. Plot corrected DOC and error
library(ggplot2) 
ggplot(subset(WS77, err>0 & TOC<80 &TOC>0))+ 
  guides(shape = guide_legend(override.aes = list(size = 20)))+ 
  geom_point(aes(x=date, y=err, color="error"), alpha=0.1, size=0.1)+ 
  geom_point(aes(x=date,y=corr.TOC, color="DOC.LOESS"), size=0.1)+ 
  theme_bw()+ 
  theme(panel.grid=element_blank(), 
        axis.title.x=element_blank(), 
        axis.title.y = element_text(size=12, face="bold"), 
        legend.position="bottom")+ 
  scale_color_manual(name=element_blank(), 

values= c(error="black", DOC.LOESS="red"))+ 
  labs(y=expression(paste("DOC"[LOESS]," or DOC Error (mg/L)")))+ 
  ylim(0,80) 

Figure S1. Print-out of the R-code after DOC is corrected. Estimated DOC error (black dots) 
for 5-minute interval DOC sensor readings based on corrections with grab samples and 
locally weighted regression (LOESS fit, span = 0.3). Corrected DOC values (red dots) after 
subtracting estimated error from raw sensor DOC data. 
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Figure S2. Recorded precipitation for 2016 at the Turkey Creek USGS meteorological 
station at the Santee Experimental Forest. 
https://waterdata.usgs.gov/sc/nwis/uv?site_no=02172035 

Figure S3 Boxplots of UV absorbance at 254 nm (UV254), turbidity, absorbance at 254 nm/ 
360 nm (E2/E3), and spectral slope ratios (SSR) in all watersheds for pre-fire baseline and 
post-fire storms.  
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Text S2 – Chloride as tracer for mass balance mixing model of the burned and unburned 
first-order watersheds converging into the second-order watershed. 

Watershed Mixing model 

Chloride was chosen as a hydrologic tracer based on available water quality parameters collected by 

the US Forest Service. We used chloride mass balances as the mixing model for first-order 

watersheds (WS77, WS80) contributing to the second-order watershed (WS79). The error of the 

model was determined by equation 1, where Q is flowrate (m3 d-1), C is the chloride concentration (g 

m-3), and the subscripts denote each of the watersheds. A lower error percentage means that the

first-order watershed contributions can account for the majority of the second-order watershed 

chloride. The positive error values indicate the introduction of additional chloride while the negative 

error values indicate an incomplete export of all chloride from the first-order watersheds to the 

second-order watershed. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (%) =  �1 − 𝑄𝑄𝑊𝑊𝑊𝑊77𝐶𝐶𝑊𝑊𝑊𝑊77+𝑄𝑄𝑊𝑊𝑊𝑊80𝐶𝐶𝑊𝑊𝑊𝑊80
𝑄𝑄𝑊𝑊𝑊𝑊79𝐶𝐶𝑊𝑊𝑊𝑊79

� × 100 (1) 

Figure S4. Error percentage of mixing model of first-order watersheds (WS77,80) feeding 
into second-order watershed (WS79) based on chloride mass balance. Positive values indicate 
first-order watershed contributions not account for all the chloride in WS79.  
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Table S1. Shapiro-Wilk test for normality for all watersheds and pre-fire and post-fire storm 
periods. p values with an asterisk were not normally distributed (α=0.05) 

Watershed Period p value 

Burned Pre-fire 0.562 
Post-fire storm #1 0.012* 
Post-fire storm #2 0.121 
Post-fire storm #3 0.126 
Post-fire storm #4 0.43 

Unburned Pre-fire 0.018* 
Post-fire storm #1 0.004* 
Post-fire storm #2 0.908 
Post-fire storm #3 0.024* 
Post-fire storm #4 0.115 

Second order Pre-fire 0.109 
Post-fire storm #1 0.045* 
Post-fire storm #2 0.045* 
Post-fire storm #3 0.031* 
Post-fire storm #4 0.772 

Table S2. Wilcoxon rank sum test between the burned and unburned first-order watershed 
DOC concentrations. p values with an asterisk indicate significant differences in DOC 
distributions (α=0.05) 

Period p value 

Pre-fire 0.004* 

Post-fire 1st storm 0.242 

Post-fire 2nd storm 0.003* 

Post-fire 3rd storm 0.001* 

Post-fire 4th storm 0.572 
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