Supplementary material for

Effect of fuel spatial resolution on predictive wildfire models

Ritu Taneja^{A,B,D}, *James Hilton*^B, *Luke Wallace*^C, *Karin Reinke*^A and *Simon Jones*^A

^AGeospatial Science, RMIT University, Melbourne, Vic. 3001, Australia.

^BCSIRO Data61, Private Bag 10, Clayton South, Vic. 3169, Australia.

^CSchool of Geography, Planning and Spatial Sciences, University of Tasmania, Hobart, Tas. 7015, Australia.

^DCorresponding author. Email: s3704716@student.rmit.edu.au

Fire simulations from Mallee heath fire spread model for remaining 8 ignition points using different spatial resolution canopy cover and height (from 2 m (first plot) to 50 m (last plot)) for an hour.

Figure S1: Fire simulated for ignition point 2 using different spatial resolution canopy cover and height (from 2 m (first plot) to 50 m (last plot)) for an hour. Black curve in each plot shows the fire simulated for a constant landscape. White area within black ellipse is completely burnt. Light grey curve in each plot shows isochrones at every 6 minutes interval (10 in total for each plot). North arrow shows the actual north direction.

Figure S2: Fire simulated for ignition point 3 using different spatial resolution canopy cover and height (from 2 m (first plot) to 50 m (last plot)) for an hour. Black curve in each plot shows the fire simulated for a constant landscape. White area within black ellipse is completely burnt. Light grey curve in each plot shows isochrones at every 6 minutes interval (10 in total for each plot). North arrow shows the actual north direction.

Figure S3: Fire simulated for ignition point 4 using different spatial resolution canopy cover and height (from 2 m (first plot) to 50 m (last plot)) for an hour. Black curve in each plot shows the fire simulated for a constant landscape. White area within black ellipse is completely burnt. Light grey curve in each plot shows isochrones at every 6 minutes interval (10 in total for each plot). North arrow shows the actual north direction.

Figure S4: Fire simulated for ignition point 5 using different spatial resolution canopy cover and height (from 2 m (first plot) to 50 m (last plot)) for an hour. Black curve in each plot shows the fire simulated for a constant landscape. White area within black ellipse is completely burnt. Light grey curve in each plot shows isochrones at every 6 minutes interval (10 in total for each plot). North arrow shows the actual north direction.

Figure S5: Fire simulated for ignition point 6 using different spatial resolution canopy cover and height (from 2 m (first plot) to 50 m (last plot)) for an hour. Black curve in each plot shows the fire simulated for a constant landscape. White area within black ellipse is completely burnt. Light grey curve in each plot shows isochrones at every 6 minutes interval (10 in total for each plot). North arrow shows the actual north direction.

Figure S6: Fire simulated for ignition point 7 using different spatial resolution canopy cover and height (from 2 m (first plot) to 50 m (last plot)) for an hour. Black curve in each plot shows the fire simulated for a constant landscape. White area within black ellipse is completely burnt. Light grey curve in each plot shows isochrones at every 6 minutes interval (10 in total for each plot). North arrow shows the actual north direction.

Figure S7: Fire simulated for ignition point 9 using different spatial resolution canopy cover and height (from 2 m (first plot) to 50 m (last plot)) for an hour. Black curve in each plot shows the fire simulated for a constant landscape. White area within black ellipse is completely burnt. Light grey curve in each plot shows isochrones at every 6 minutes interval (10 in total for each plot). North arrow shows the actual north direction.

Figure S8: Ignition point 10 Fire simulated for ignition point 10 using different spatial resolution canopy cover and height (from 2 m (first plot) to 50 m (last plot)) for an hour. Black curve in each plot shows the fire simulated for a constant landscape. White area within black ellipse is completely burnt. Light grey curve in each plot shows isochrones at every 6 minutes interval (10 in total for each plot). North arrow shows the actual north direction.