## Supplementary material for

# Effect of fuel spatial resolution on predictive wildfire models 

Ritu Taneja ${ }^{\mathrm{A}, \mathrm{B}, \mathrm{D}}$, James Hilton $^{\mathrm{B}}$, Luke Wallace $^{\mathrm{C}}$, Karin Reinke ${ }^{\mathrm{A}}$ and Simon Jones ${ }^{\mathrm{A}}$

${ }^{\text {A}}$ Geospatial Science, RMIT University, Melbourne, Vic. 3001, Australia.
${ }^{B}$ CSIRO Data61, Private Bag 10, Clayton South, Vic. 3169, Australia.
${ }^{\text {C }}$ School of Geography, Planning and Spatial Sciences, University of Tasmania, Hobart, Tas. 7015, Australia.
${ }^{\text {D }}$ Corresponding author. Email: s3704716@student.rmit.edu.au

Fire simulations from Mallee heath fire spread model for remaining 8 ignition points using different spatial resolution canopy cover and height (from 2 m (first plot) to 50 m (last plot)) for an hour.


Figure S1: Fire simulated for ignition point 2 using different spatial resolution canopy cover and height (from 2 m (first plot) to 50 m (last plot)) for an hour. Black curve in each plot shows the fire simulated for a constant landscape. White area within black ellipse is completely burnt. Light grey curve in each plot shows isochrones at every 6 minutes interval ( 10 in total for each plot). North arrow shows the actual north direction.


Figure S2: Fire simulated for ignition point 3 using different spatial resolution canopy cover and height (from 2 m (first plot) to 50 m (last plot)) for an hour. Black curve in each plot shows the fire simulated for a constant landscape. White area within black ellipse is completely burnt. Light grey curve in each plot shows isochrones at every 6 minutes interval ( 10 in total for each plot). North arrow shows the actual north direction.


Figure S3: Fire simulated for ignition point 4 using different spatial resolution canopy cover and height (from 2 m (first plot) to 50 m (last plot)) for an hour. Black curve in each plot shows the fire simulated for a constant landscape. White area within black ellipse is completely burnt. Light grey curve in each plot shows isochrones at every 6 minutes interval ( 10 in total for each plot). North arrow shows the actual north direction.


Figure S4: Fire simulated for ignition point 5 using different spatial resolution canopy cover and height (from 2 m (first plot) to 50 m (last plot)) for an hour. Black curve in each plot shows the fire simulated for a constant landscape. White area within black ellipse is completely burnt. Light grey curve in each plot shows isochrones at every 6 minutes interval ( 10 in total for each plot). North arrow shows the actual north direction.


Figure S5: Fire simulated for ignition point 6 using different spatial resolution canopy cover and height (from 2 m (first plot) to 50 m (last plot)) for an hour. Black curve in each plot shows the fire simulated for a constant landscape. White area within black ellipse is completely burnt. Light grey curve in each plot shows isochrones at every 6 minutes interval ( 10 in total for each plot). North arrow shows the actual north direction.


Figure S6: Fire simulated for ignition point 7 using different spatial resolution canopy cover and height (from 2 m (first plot) to 50 m (last plot)) for an hour. Black curve in each plot shows the fire simulated for a constant landscape. White area within black ellipse is completely burnt. Light grey curve in each plot shows isochrones at every 6 minutes interval ( 10 in total for each plot). North arrow shows the actual north direction.


Figure S7: Fire simulated for ignition point 9 using different spatial resolution canopy cover and height (from 2 m (first plot) to 50 m (last plot)) for an hour. Black curve in each plot shows the fire simulated for a constant landscape. White area within black ellipse is completely burnt. Light grey curve in each plot shows isochrones at every 6 minutes interval ( 10 in total for each plot). North arrow shows the actual north direction.


Figure S8: Ignition point 10 Fire simulated for ignition point 10 using different spatial resolution canopy cover and height (from 2 m (first plot) to 50 m (last plot)) for an hour. Black curve in each plot shows the fire simulated for a constant landscape. White area within black ellipse is completely burnt. Light grey curve in each plot shows isochrones at every 6 minutes interval ( 10 in total for each plot). North arrow shows the actual north direction.

