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Abstract. Climate projections showAustralia becoming significantlywarmer during the 21st century,while precipitation
decreases overmuch of the continent. Such changes are generally considered to increasewildfire risk. Nevertheless, using a
process-based model of vegetation dynamics and vegetation–fire interactions, we show that while burnt area increases in

southern and central Australia, it decreases in northern Australia. Overall, the projected increase in fire by the end of the
21st century is small (0.7–1.3% of land area, depending on the climate scenario). The direct effects of increasing CO2 on
vegetation productivity andwater-use efficiency influence simulated fire regimes: CO2 effects tend to increase burnt area in

arid regions, but increase vegetation density and reduce burnt area in forested regions. Increases in burnt area promote a shift
to more fire-adapted trees in wooded areas and their encroachment into grasslands, with an overall increase in forested area
of 3.9–11.9% of land area by the end of the century. The decrease in burnt area in northern Australia leads to an increase in

tree cover (,20%) and an expansion of tropical forest. Thus, although the overall change in burnt area is small, it has
noticeable consequences for vegetation patterns across the continent.

Additional keywords: biome shifts, CO2 impacts on fire, fire danger, fire-induced vegetation changes, fuel limitation,
resprouting vegetation.
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Introduction

Approximately 5% (0.41� 106 km2) of the Australian continent
burns annually, and all but themost arid parts of the continent are
susceptible to periodic fire (Bradstock et al. 2012; Hughes and

Steffen 2013; Murphy et al. 2013). Fire frequency is particularly
high in the tropical savannas of northern Australia (1–5 years)
although the intensity of these fires is low, whereas more intense

but less frequent (.100 years) fires are characteristic of the
forests of eastern Australia. Fires are more frequent (1–10 years)
in woodlands in the continental interior, but become increasingly
rare towards the arid regions because of fuel limitation (Murphy

et al. 2013). Much of the Australian vegetation is adapted to fire
through strategies that promote rapid re-establishment from seed
or recovery through resprouting (Lawes et al. 2011; Bradstock

et al. 2012; Clarke et al. 2013). Nevertheless, changes in fire
regimes are of concern both because of the rapidly escalating
social and economic costs (Ashe et al. 2008; Crompton and

McAneney 2008; Stephenson et al. 2012; Hughes and Steffen
2013) and because of the potential impacts on vegetation and
biodiversity (Bradstock 2008; Williams et al. 2009; Gill 2012).

Climate projections for the 21st century (Collins et al. 2013;
Kirtman et al. 2013) show significant warming over Australia,
with decreased precipitation in many regions. Warmer and drier
conditions are generally considered to increase in the risk of fire

in Australia (Williams et al. 2001; Hennessy et al. 2005; Lucas

et al. 2007; Pitman et al. 2007; Fox-Hughes et al. 2014).
However, increased fire risk does not necessarily translate into
increased burning in situations where the climate changes

reduce vegetation productivity and hence fuel loads (Harrison
et al. 2010; Bistinas et al. 2014; Higuera et al. 2015; Knorr et al.
2016a, 2016b). Indeed, statistical modelling suggests either a

reduction (Krawchuk et al. 2009) or only a moderate increase
(Moritz et al. 2012) in fire activity in Australia. The reliability of
these projections is compromised because they do not account
for the impact of changing CO2 concentrations on vegetation

productivity and water-use efficiency or for potential changes in
vegetation distribution and their impact on fire regimes under a
changing climate. Both of these effects are included in process-

based dynamic global vegetation models (DGVMs).
Here, we use a version of the Land surface Processes and

eXchanges Dynamic Global Vegetation Model (LPX-Mv1

DGVM;Kelley et al. 2014) driven by outputs from nine coupled
ocean–atmosphere models forced using two different future
scenarios of changes in atmospheric composition and land use

from the fifth phase of the Coupled Model Intercomparison
Project (CMIP5; Taylor et al. 2012) to examine potential
changes in Australian fire regimes over the 21st century and
the implications of these changes for natural vegetation patterns.
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Methods

Study area

Australia spans 298 of latitude, with a temperature gradient from
tropical in the north to temperate in the south. Much of the
continent is arid or semiarid. Precipitation regimes reflect the

seasonal migration of the subtropical anticyclone belt (Sturman
and Tapper 2005). Most of the north is influenced by south-
easterly trade winds in winter and monsoonal flow in summer,

and hence has highly seasonal rainfall, with dry winters and wet
summers. The central interior, dominated by travelling anti-
cyclones throughout the year, is dry. Troughs between the

travelling anticyclones entrain maritime north-westerly air-
flows, bringing summer rain to parts of the east coast and
southern highlands. SouthernAustralia, dominated by travelling

anticyclones in summer andwesterly winds inwinter, haswinter
rainfall and dry summers. Much of northern and eastern
Australian experiences considerable interannual variability in
precipitation, associated with the El Nino–Southern Oscillation.

The natural vegetation of Australia follows a structural
continuum reflecting these rainfall patterns (Groves 1994).
Closed forests are distributed discontinuously along the east

coast from north-eastern Queensland to western Tasmania, in
regions with year-round rainfall. Tall, open forests occur
throughout coastal and montane south-eastern Australia and in

south-western Australia, in subhumid sites with either summer
or winter rainfall. Woodlands occupy drier areas inland, wher-
ever rainfall is sufficient regardless of source or season. Mallee
shrubland occurs in areas of southern Australia with a long dry

season but where westerly flow brings rain in winter. The arid
interior is largely characterised by shrubland and tussock grass.

Fire plays a major role in shaping Australian vegetation

patterns, and many plants show adaptations to fire (Lawes et al.
2011; Bradstock et al. 2012; Clarke et al. 2013). The different
climate regimes and vegetation types give rise to different fire

regimes across the continent (Murphy et al. 2013). Most of the
closed forests in eastern Australia burn infrequently, but when
fires do occur in hot, dry years, the abundance of fuel leads to

high-intensity ground and crown fires. In the continental interi-
or, aridity prevents the build-up of high fuel loads, limiting both
the occurrence and intensity of fires. The seasonal precipitation
regime in northern Australia allows fuel accumulation in the wet

season and promotes rapid fuel drying in winter. This results in
frequent fires, but their regularity prohibits fuel build-up and
thus these fires are generally of low intensity. Seasonal precipi-

tation regimes in southern Australia are often characterised by
high interannual variability, and this leads tomore unpredictable
fire seasons than in northern Australia. The role of fuel loads in

creating the diversity of fire regimes across the continent
provides amajor justification for using process-basedmodelling
to investigate the impacts of climate change on fire regimes.

The model and modelling approach

We use the LPX-Mv1 fire-enabled DGVM (Kelley et al. 2014)
to simulate the response of Australian fire regimes and vegeta-

tion to climate changes resulting from two scenarios of
21st century changes in atmospheric composition and land use.
We use outputs from multiple coupled ocean–atmosphere
models driven by these two scenarios to encompass the range of

potential responses to each scenario. LPX-Mv1 (Kelley et al.

2014) was developed from the LPX DGVM (Prentice et al.

2011); the vegetation dynamics component of LPX was based

on the Lund–Potsdam–Jena (LPJ) DGVM (Sitch et al. 2003).
The model simulates vegetation and fire properties on a spatial
grid of 0.58 by 0.58; it does not simulate spatially explicit dis-

tributions within a grid cell.
Vegetation within a grid cell is described in terms of

fractional coverage of plant functional types (PFTs), defined

by life form (tree, grass), with grasses further subdivided by
photosynthetic pathway (C3, C4) and trees by bioclimatic toler-
ance (tropical, temperate, boreal), leaf type, (broadleaf, needle-
leaf), and phenological response to drought or cold (evergreen or

deciduous). LPX-Mv1differs fromLPXby including resprouting
and non-resprouting variants of tropical broadleaf evergreen
trees, tropical broadleaf deciduous trees, temperate broadleaf

evergreen trees and temperate broadleaf deciduous trees.
Climatic tolerance limits determine whether a PFT could occur
in a grid cell. Establishment rates are dependent on the area

available for colonisation, except that resprouting PFTs have
lower establishment rates than non-resprouting PFTs. The abun-
dance of each PFT is determined through competition, as a

function of PFT-specific productivity. Gross primary production
is calculated for each PFT using an explicit photosynthesismodel
and full accounting of the water and energy exchanges between
vegetation and the atmosphere (Sitch et al. 2003). Transpiration,

and therefore gross primary production (GPP), is limited if
available moisture is less than the maximum demand. Atmo-
spheric CO2 concentration affects the water cost per unit produc-

tion.Net Primary Production (NPP) is calculated after accounting
for maintenance and growth respiration, and allocated in fixed
proportions to roots, leaves and woody tissues.

The dynamic vegetation component of the model provides
information on vegetation type and productivity that is then used
to specify fuel loads in the fire component of the model. Woody
material contributes to coarse fuel, while leaves and grass

contribute to fine fuel loads (Fig. 1). The soil moisture account-
ing scheme in the vegetation component is used to predict the
moisture content of live fuel. Vegetation information is passed

to the fire module once a year.
The fire module in LPX-Mv1 represents the influence of

potential ignition rates, vegetation properties and weather con-

ditions on biomass burning through explicit formulations of the
probability of fires starting, their rate of spread, fire intensity and
the amount of fuel combusted, and the consequences for the

mortality and regeneration of different PFTs. The model simu-
lates multiple aspects of the fire regime (number of fires, fire
type, intensity, frequency and burnt area), and changes in these
characteristics influence vegetation composition.

Fire is explicitly simulated in each grid cell on a daily time-
step. This temporal resolutionmeans that themodel is adapted to
using daily mean climate conditions as inputs; it does not take

account of sub-daily or short-lived extreme conditions such as
wind gusts. The number of fire starts is a function of lightning
ignitions and fire susceptibility (Fig. 1). LPX-Mv1 does not

include human ignitions. Although human ignitions affect the
number and seasonality of fires (Russell-Smith et al. 2007;
Archibald et al. 2013), they have little effect on burnt area
(Bistinas et al. 2014; Knorr et al. 2014; Knorr et al. 2016a).
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LPX-Mv1 allows the fraction of ground strikes to vary spatially
and seasonally, realistically partitions strike distribution
between wet and dry days, and has a variable number of strikes

on dry days (Kelley et al. 2014). Fire susceptibility takes into
account the amount, properties and moisture content of the
available fuel load. There are four fuel size classes: 1-h or

fine fuel (derived from leaves and grass), 10-h (from small
branches), 100-h (from large branches) and 1000-h (from boles
and trunks) fuels. The size class determines the rate at which fuel

moisture equilibrates to relative humidity on dry days. Ignitions
do not result in a fire unless the combined load of 1-, 10- and
100-h fuel is greater than 200 gm�2, a surrogate forminimal fuel
continuity (Thonicke et al. 2001). Fuel loads can be reduced

through fire or decomposition, where coarse and fine fuels
decompose at different rates (Brovkin et al. 2012).

Fire spread, intensity and residence time are dependent on
wind speed and fuel moisture (Fig. 1), and calculated using the
Rothermel equations (Rothermel 1972). Fires are assumed to

be elliptical and fire size is therefore calculated using a simple
geometric relationship with rate of spread. Wind speed is
modulated by vegetation type and density, as measured by foliar

projective cover. Burnt area is calculated as the product of the
number of fires and fire spread.

Mortality occurs through crown scorching and cambial

death, where cambial damage is determined by fire intensity
and residence time in relation to the bark thickness of woody
vegetation. In LPX-Mv1, the PFT-specific bark thickness is
specified as a range when new populations establish. Fires will

preferentially remove thin-barked trees, leading to a change in
average bark thickness as a consequence of fire history (Kelley
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Fig. 1. Description of the structure of the fire component of LPX-Mv1. Climate and lightning inputs to the model

are identified bywhite boxes, outputs from the vegetation dynamics component of themodel are identified by green

boxes. The climate and lightning inputs are monthly values of: minimum temperature (Tmin), precipitation (Pr),

potential evapotranspiration (PET), maximum temperature (Tmax), number of wet days (Wet days), surface wind

speed (Wind speed) and the total number of lightning flashes from which the number of cloud to ground (CG)

flashes is determined. The internal processes and exchanges that are explicitly simulated by the fire component of

themodel are colour-coded,where pale green boxes show state variables associatedwith fuel load, blue boxes show

state variables associated with fuel moisture (where Rh is relative humidity and Tdew is dewpoint temperature),

yellow boxes show state variables associated with ignitions, red boxes show state variables associated with fire

regime, and brown boxes show state variables associated with mortality and biomass consumption.
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et al. 2014). Resprouting PFTs survive fires if there is uncon-

sumed aboveground biomass; plant size and productivity after
resprouting are, however, reduced in proportion to the amount of
biomass consumed.

Given its spatial and temporal resolution, LPX-Mv1 is
particularly well adapted to simulate regional-scale changes in
burnt area, the aspect of the fire regime that is important for

carbon cycle and climate feedbacks, in response to changes in
climate. The 21st century LPX-Mv1 simulations are idealised
experiments focusing on the impact of climate and CO2 changes
on vegetation and fire regimes. They do not account for potential

future changes in the number of lightning strikes or in anthro-
pogenic fire suppression. There is no convincing evidence for
changes in thunderstorm frequency over the late 20th century

(Hartmann et al. 2013) and estimates of the change in lightning
flash rate with future warming vary considerably (Williams
1992; Price and Rind 1994; Michalon et al. 1999; Romps et al.

2014). Furthermore, sensitivity analyses show that changes in
the number of strikes have relatively little effect on burnt area
comparedwith the impact of changingweather conditions on the

probability that a strike will cause ignition (Kelley et al. 2014).
Anthropogenic landscape fragmentation significantly reduces
fire spread and hence burnt area (Bistinas et al. 2014;Knorr et al.
2014) but is not included in the 21st century simulations because

projected changes in land use are highly uncertain.

Input data

The daily climate data required for the fire module are calcu-

lated in the model by linear interpolation between the monthly
values for each variable assigned to the midpoint of each month.
Monthly maximum and minimum temperature, precipitation,

cloud cover, and number of wet days were obtained from the
Climate Research Centre Time Series 3.1 (CRU TS3.1) dataset
(Harris et al. 2013) and monthly wind speed from the National

Center for Environmental Prediction (NCEP) reanalysis dataset
(Kalnay et al. 1996). The model includes a weather generator
(Geng et al. 1988) that allocates precipitation to wet days taking
account of persistence in dry and wet conditions, and distributes

the observed monthly precipitation to wet days using an
empirically based function of rainfall distribution such that the
amount of rain falling on each wet day is different. A seasonal

climatology of lightning ignitions is calculated from the High-
Resolution Monthly Climatology of lightning flashes from the

Lightning Imaging Sensor–Optical Transient Detector (LIS/

OTD) dataset (available at http://gcmd.nasa.gov/records/
GCMD_lohrmc.html, accessed 16 August 2016). Atmospheric
CO2 concentration is prescribed annually as a single global

value from observations (available at http://www.esrl.noaa.gov/
gmd/, accessed 16 August 2016).

The model was spun up (Table 1) using constant CO2

(286 ppm) and detrended climate data until the carbon pools
were in equilibrium. The detrended climate data were obtained
by regressing the annual average values for all climate variables
for the period 1950–2000 on each grid cell and removing the

value estimated for the slope of this regression from themonthly
data. The historical run (Table 1) used transient CO2 from 1850
onwards. The detrended climate data were used until time-

varying data were available, i.e. after 1948 for wind speed and
from 1901 onwards for all other climate variables (Table 1).

LPX-Mv1 was run from 2006 to 2100 using climate realisa-

tions from nine coupled ocean–atmosphere climate models
(Table 2) forced by two alternative Representative Concentra-
tion Pathway (RCP) scenarios (van Vuuren et al. 2011): RCP4.5

and RCP8.5. Lightning ignitions are prescribed as in the historic
simulation. However, because the number of dry-day strikes is
determined by number of wet days per month, the interannual
variability in the number of dry strikes is different in the future

simulations from in the historic period. LPX-Mv1 is also driven
by atmospheric CO2, which changes in the RCP4.5-driven
simulations from 380.8 to 576 ppm by 2080 CE and stabilises

thereafter. In the RCP8.5 simulations, CO2 concentrations
increase continuously to reach 1231 ppm by 2100. To examine
the direct impact of increasing CO2 on vegetation productivity

and water-use efficiency, we made additional simulations in
which climate varied but CO2was held constant at the 2006 level
of 380.8 ppm (fixed-CO2 experiment).

Model evaluation

The historic simulation was evaluated by comparing simulated
and observed vegetation distribution (DeFries and Hansen
2009), fine litter production, as a surrogate for fuel load (Veg-

etation And Soil-carbon Transfer (VAST) dataset: Barrett
2001), carbon (Ruesch and Gibbs 2008), and burnt area and
timing of the fire season from the 4th version of the Global Fire

EmissionsData (GFED4;Giglio et al. 2013). The simulations do
not take account of land-use changes, so cropland areas were

Table 1. Summary of the simulation protocol for model spin-up and the simulations

CRU TS3.1, Climate Research Centre Time Series 3.1 (CRU TS3.1) dataset; NCEP, National Center for Environmental

Prediction reanalysis data set; LIS-OTD, High Resolution Monthly Climatology of lightning flashes from the Lightning

Imaging Sensor–Optical Transient Detector

Period CO2 Maximum and minimum

temperature, precipitation,

rain days, and sunshine hours

Wind speed Lightning

Spin-up 286 ppm Detrended CRU TS3.1 Detrended NCEP Climatology LIS-OTD

1850–1900 Transient Detrended CRU TS3.1 Detrended NCEP Climatology LIS-OTD

1901–1947 Transient Transient CRU TS3.1 Detrended NCEP Climatology LIS-OTD

1948–1979 Transient Transient CRU TS3.1 Transient NCEP Climatology LIS-OTD

1980–2006 Transient Transient CRU TS3.1 Transient NCEP Climatology LIS-OTD

2006–2100 Transient Transient Transient Climatology LIS-OTD
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masked out (using the Global Land Cover 2000 (GLC2000)
5 � 50 land-cover map; Bartholomé and Belward 2005) in
making these comparisons.

We used benchmarking metrics where performance is
expressed relative to amean and randommodel for each variable
(Kelley et al. 2013) to evaluate the realism of the simulations.

We use the normalised mean error (NME) to account for
geographic patterning in comparisons of total values and annual
averages; these scores provide a description of the spatial error
of the model (Table 3). The NME takes the value 0 when

agreement is perfect, 1 when agreement is equal to that expected
when the mean value of all observations is substituted for the
model, and values .1 when the model’s performance is worse

than the null model. We use the Manhattan Metric (MM) for
measures of relative abundance (i.e. where the sum of items in
each grid cell must be equal to 1, e.g. for vegetation cover).

MM takes the value 0 for perfect agreement, and 2 for complete
disagreement. Temporal differences in the timing of the
fire season were assessed by calculating the mean phase differ-

ence (MPD, Table 3) in months between observation and
simulations, where 0 indicates perfect agreement and 1 perfect
disagreement in timing.

Two null models were constructed for each benchmark to

facilitate interpretation of the metric scores (Table 3). The
‘mean null model’ compares each benchmark with a dataset of

the same size, filled with the mean of the observations. The
‘random null model’ is constructed by creating a dataset of the
same dimensions as the benchmark dataset by bootstrap resam-

pling of the observations, using 1000 randomisations to estimate
a probability density function of the scores.

Analyses of future fire

We examine the 21st century changes in vegetation and fire,
focusing on burnt area, for the continent as a whole and for
regions where there is a consistent signal in the direction of the

simulated change in burnt area during the 21st century. We
defined four regions for this second analysis: northern Australia
(north of 178S), central Australia (between 248 and 358S and

1248 and 1488E), south-eastern Australia (the area lying to the
south-east of the line joining 328S 1538E and 388S 1418E) and
south-western Australia (the area south-west of the line joining

258S 1138E and 338S 1248E).
Ensemble averages of the LPX-Mv1 outputs were created by

simple averaging of the results of individual simulations for

each of the RCP scenarios, with and without changes in CO2

(RCP4.5 varying-CO2, RCP4.5 fixed-CO2, RCP8.5 varying-CO2,
RCP8.5 fixed-CO2). The robustness of the simulated changes
is assessed by the agreement between models, while signifi-

cance is measured by the strength of the change relative to
interannual variability in the historic period (1997–2006).

Table 3. Benchmarking metrics for the modern simulation of Australian vegetation and fire

The Manhattan Metric (MM) is used to assess vegetation properties, the normalised mean error (NME) to assess fine fuel loads, burnt

area and carbon, and the mean phase difference (MPD) to assess fire seasonality. Values for the mean and random null model for each

variable are given for comparison. Values that are better than the mean null model are shown in italics, values that are better than the

random null model are indicated by an asterisk. n/a, not applicable

Tree cover Grass cover Fine fuel Burnt area Fire season Carbon

Observed mean 8.4% 65% 230 g m�2 6.8% n/a 2388 g C m�2

Simulated mean 4.9% 55% 202 g m�2 5.0% n/a 3481 g C m�2

Metric MM MM NME NME MPD NME

Mean null model 0.43 0.49 1 1 0.45 1

Random null model 0.52� 0.002 0.66� 10.002 1.44� 0.21 1.14� 0.003 0.47� 0.002 1.19� 0.013

LPX-Mv1 mean 0.16* 0.51* 0.73* 0.88* 0.43* 0.94*

Table 2. Information on the models used to provide future climate scenarios

OA models are coupled ocean–atmosphere models; OAC models include a marine and terrestrial carbon cycle. The

resolution (number of grid cells by latitude and longitude) is that of the atmospheric and land-surface components of each

model

Code Centre Type Original resolution

CNRM-CM5 Centre National de Recherches Meteorologiques OA 128, 256

GISS-CM5 NASA Goddard Institute for Space Studies OA 90, 144

HadGEM2-CC Hadley Centre, UK Meteorological Office OA 145, 192

MRI-CGCM3 Meteorological Research Institute OA 160, 320

HadGEM2-ES Hadley Centre, UK Meteorological Office OAC 145, 192

IPSL-CM5a-LR Institut Pierre-Simon Laplace OAC 96, 96

MIROC-ESM Japan Agency for Marine–Earth Science and Technology OAC 64, 128

MPI-ESM-LR Max Planck Institute for Meteorology OAC 96, 192

BCC-CSM1–1 Beijing Climate Centre OAC 64, 128

Future fire regimes in Australia Int. J. Wildland Fire E
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Changes in vegetation are assessed in terms of the abundance
of individual PFTs and as shifts in major vegetation types
(biomes). We convert the simulated abundance of individual

PFTs to biomes using a version of the algorithm described in
Prentice et al. (2011), inwhich the boundaries between biomes are
defined by the presence and/or absence of specific PFTs and the

absolute amounts of tree cover. We define five biomes: grassland
and shrubland, sclerophyll woodland, temperate forest, tropical
savanna, and tropical forest. We distinguish tropical biomes

(tropical savanna, tropical forest) by the presence of either tropical
broadleaf evergreen trees or tropical broadleaf deciduous trees.
The boundary between shrubland and woodland is set at 2% tree
cover and that between woodland and forest at 60% tree cover.

Results

Simulation of present-day vegetation properties
and fire regimes

LPX-Mv1 reproduces the observed pattern of tree and grass
abundance reasonably well, though there is less woody vege-
tation in northern Australia and more in south-eastern Australia
than observed (Fig. 2; Table 3). Although the model under-

estimates the amount of woody vegetation (Table 3), transitions
from forest through woodland and savanna to grassland in
northern and eastern Australia are well captured. LPX-Mv1

reproduces the changing abundance of resprouters and non-
resprouters with increasing aridity and post-fire vegetation
recovery rates at sites where this has been measured (Kelley

et al. 2014). Vegetation productivity (NPP) is close to obser-
vationally constrained estimates of NPP during the recent
decade (Table 3: 2191 Tg C year21 compared with observed

values of 2210 � 398 Tg C year21: Haverd et al. 2013). The
model captures the first-order geographic patterns in biomass
(Table 3); the largest discrepancies are in areas where tree cover
is underestimated. Similarly, the model simulates fine-fuel

production comparable with observed values (Table 3: simu-
lated mean 202 g m�2 year�1 compared with observed
mean values of 230 g m�2 year�1). Benchmark metrics show

LPX-Mv1 performs much better than the mean and randomly
resampled models for most vegetation properties (Table 3).

LPX-Mv1 reproduces the observed geographic patterns of

burnt area reasonably well, in particular the high incidence of
fire in northernAustralia and themore variable levels in the fuel-
limited continental interior (Fig. 2). The model overestimates

the area burnt in both south-western and south-easternAustralia,
and underestimates the burnt area in northern Australia (Fig. 2).
Nevertheless, the model correctly predicts the broad-scale
patterns in fire seasonality (Table 3), including the prevalence

of fires in autumn and winter in northern Australia and in spring
and summer in southern Australia. However, there are discre-
pancies in the timing of peak fire month and fire-season length

in central Australia: the timing of the peak fire month can differ
by more than 3 months and the fire season can be longer by a
similar amount.

Continental response to future climate scenarios

The ensemble average climate shows a robust and significant
increase in temperature over the 21st century (Fig. 3) in response
to both forcing scenarios. The response to theRCP4.5 scenario is

less extreme: the RCP8.5 ensemble average increase in mean
annual temperature (MAT) is 48C by the end of the 21st century,

with changes of .58C in north-western Australia, whereas the
RCP4.5 ensemble response is 38C, although parts of north-
western Australia still have increases of .58C (Fig. 4). The

average change in mean annual precipitation (MAP) is small in
both scenarios. There is a small but robust and marginally sig-
nificant decrease in precipitation in northern Australia of
,50 mm year�1 in the RCP4.5 scenario runs (Fig. 4), although

the decrease can be up to 200 mm year�1 in limited areas.
Precipitation increases in some regions of the eastern coastal
plains, south-eastern Australia and Tasmania, and also south-

western Australia, but the changes are small, not robust and not
significant. The decrease in precipitation in northernAustralia is
slightly smaller in the RCP8.5 simulations (,40 mm year�1),

although again larger decreases (,125 mm year�1) occur in
some places. Changes in MAP over the rest of the country are
small, not consistent in sign, and not significant. These climate

changes result in an increase in the frequency of ‘fire weather’,
as measured by the cumulative values of the McArthur Mark 5
Forest Fire Danger Index (McArthur 1967; Noble et al. 1980) in
forest and woodland biomes, and the Grassland Mark 3 Fire

Danger Index (McArthur 1966; Pitman et al. 2007) in grasslands
(Fig. 2, Fig. 3), and drive an overall increase in burnt area.

Observed

(a)

Simulated

0 1 2 5 10 20 50

%

(b)

0 0.1 0.2 0.5 1 2 5

kg C m�2

(c)

0 0.1 1 2 5 10 20

%

Fig. 2. Comparison of observed (left-hand column) and simulated (right-

hand column) vegetation and fire during the recent period. Observed values

of (a) tree cover were obtained from DeFries and Hansen (2009). Observed

values for (b) carbon were obtained from Ruesch and Gibbs (2008).

Observed (c) average burnt area for the period 1997 to 2006 is from GFED4

(Giglio et al. 2013). Grid cells with.50% cropland or urban land are shaded

in grey; these cells are not taken into account in the model benchmarking.
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Nevertheless, the modelled change in burnt area is only
0.05 � 106 km2 year�1 by the end of the century in the RCP4.5

simulations, and only 0.10 � 106 km2 year�1 in the RCP8.5
simulations, compared with 0.41 � 106 km2 year�1 in the his-
toric simulation (Fig. 3; Table 4). Thus, the simulated increase is

only 12% (RCP4.5) or 24% (RCP8.5) of the historic burnt area.
Despite the increase in burnt area, tree cover increases during the
century and reaches nearly 22% by the end of the century in the
RCP8.5 simulations.

Regional fire regime changes

Despite the decrease in precipitation in northern Australia,

there is a significant decrease in burnt area in both the RCP
scenarios. Burnt area in northern Australia is reduced
from 0.08 � 106 km2 year�1 in the historic simulations to

0.05 � 106 km2 year�1 in the RCP 4.5 simulations and to
0.04 � 106 km2 year�1 in the RCP8.5 simulations (Fig. 5;
Table 4), representing a 35% (RCP4.5) or 47% (RCP8.5)

decrease in the historic burnt area. Part of the explanation for the
decrease is that simulated surface wind speeds decrease during

the fire season, limiting fire spread. The reduction in fire is
accompanied by an increase in tree cover, from 19% during the
historic period to 37% by the end of the 21st century in the

RCP4.5 scenario and to 62% by the end of the 21st century in
the RCP8.5 scenario. The increase in tree cover leads to a shift in
the ratio of fine to coarse fuel: although fuel loads are increased
overall, the increase in coarse fuel is larger than the increase in

fine fuel (Fig. 5). As a result of this shift, the fuel dries more
slowly and this inhibits fire. The increased tree cover reduces
rates of fire spread (and hence burnt area) by further decreasing

groundwind speed (Rothermel 1972). The increase in tree cover
is due to the CO2-induced increase in C3 plant water-use effi-
ciency (Fig. 6). Comparison with the fixed-CO2 simulation

shows that climate change alone produces a decrease in tree
cover by 10 and 8% in RCP4.5 and RCP8.5 respectively and no
significant change in fire (Table 5).
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Fig. 3. Changes in climate, fire risk, vegetation, fuel load and burnt area over Australia through the 21st century in simulations driven

by theRCP4.5 andRCP8.5 scenarios. The time-series (bold lines) are ensemble averages of themodel results, smoothed using a 10-year

moving window, where the RCP4.5 simulations are in blue and the RCP8.5 simulations are in red, for (a) mean annual temperature

(MAT, 8C); (b) mean annual precipitation (MAP, mm year�1); (c) the ratio of actual to equilibrium evapotranspiration (a, unitless);
(d ) fire risk as measured by the McArthur cumulative fire danger index (FDI); (e) tree cover (%); ( f ) total fuel load (kg m�2); and

(g) burnt area (%). The range in the individual model simulations is indicated by the shaded bands (red for RCP4.5, blue for RCP8.5).

The dashed horizontal lines indicate the average value of each variable during the last decade of the historic simulation.
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The continental interior, occupied by shrubland and open
savanna, is projected to experience a large increase in fire over
the 21st century. Burnt area increases from0.06� 106 km2 year�1

in the historic simulations to 0.11� 106 km2 year�1 (RCP 4.5) or
0.15 � 106 km2 year�1 (RCP8.5) by the end of the 21st century
(Fig. 5, Table 4), representing a 78% (RCP4.5) or 142% (RCP8.5)

increase relative to the historic burnt area in this region. The
increased temperatures and decreased precipitation over most of
this region increase fire danger (Fig. 4). Under present-day
conditions, low fuel loads limit burnt area in much of the interior;

increased temperature and decreased precipitation should further
reduce vegetation productivity and hence fuel loads. Thus, the
simulated increase in fire in the interior is predominantly a result

of the direct impacts ofCO2 on vegetation productivity (Fig. 6). In
the fixed-CO2 simulations, NPP is decreased by 13% in the
RCP4.5 and 26% in the RCP8.5 simulations compared with the

historic simulation, resulting in reduced fuel and a decrease in
burnt area compared with the historic period in both scenarios
(Table 5; Fig. 6).

South-eastern Australia has some of the largest increases in

fire, with some areas experiencing a 10–20% increase in burnt
area by the end of the century in both RCP simulations (Fig. 4,
Table 4). These increases result from a combination of increased

fuel load and decreased fuel moisture (Fig. 5). The increase in
fuel load is a result of CO2 fertilisation (Fig. 6): in the fixed-CO2

simulations, fuel load is reduced to 1.06 and 0.73 kg m�2 in the

RCP4.5 and RCP8.5 simulations respectively, compared with
1.2 kgm2 in the control simulation. Despite the increase in burnt
area, tree cover still increases in the south-eastern interior

(Fig. 4). In contrast, tree cover is reduced in forested coastal
regions (from 81% in the control simulation to 73–74% in the
RCP simulations, Table 4), largely owing to increases in burnt
area in areas with low fire in the historic period (Fig. 4).

South-western Australia is characterised by large projected
increases in fire over the 21st century (Fig. 4). Burnt area

increases from 0.038 � 106 km2 year�1 in the historic simula-
tions to 0.052� 106 km2 year�1 (RCP4.5) and 0.049� 106 km2

year�1 (RCP8.5) (Fig. 5, Table 4), representing a 37% (RCP4.5)

or 28% (RCP8.5) increase in the historic burnt area. There is
only a small and non-robust change in fuel moisture, and the
increase in fire is almost entirely driven by an increase in fuel

loads (Fig. 5) with average fuel loads increasing from 0.27 to
0.33 and 0.36 kg m2 in RCP4.5 and RCP 8.5 respectively. This
increase in fuel load is a result of CO2 fertilisation. In the fixed-
CO2 simulations, fuel loads decreased by 0.02 kg m2 in the

RCP4.5 and 0.08 kg m2 in the RCP8.5 simulations compared
with the historic simulation (Table 5). The regional increase in
fire is driven by changes in the woodland and grassland areas of

the interior; fire decreases in those areas where forest replaces
sclerophyll woodland (Fig. 4; Fig. 7) owing to a higher propor-
tion of coarser fuel, which dries more slowly. Overall, tree cover

in south-western Australia increases from 17% in the historic
simulations to 22% in the RCP4.5 and 32% in the RCP8.5
simulations, partly owing to the conversion from sclerophyll
woodland to forest but also owing to increases in woody

vegetation in the interior, despite the increase in fire.

Impacts of changing fire regimes and climate on
vegetation patterns

The simulated changes in fire regimes and climate produce
noticeable changes in vegetation distribution by the end of the

21st century (Fig. 7). The pattern of expansion and/or contrac-
tion of major biomes is similar in the two RCP scenarios, but
more exaggerated in RCP8.5. The area of grass and shrubland is

reduced from 5.34 � 106 km2 in the historic simulation to
4.91� 106 km2 in the RCP4.5 and 3.08� 106 km2 in the RCP8.5
simulation, equivalent to a decrease of 8 and 42% respectively.
These changes largely reflect the expansion of tropical savanna

in northern Australia (Fig. 7). This conversion occurs because of
CO2 fertilisation and despite small but significant increases in

Table 4. Summary of changes in climate, vegetation parameters and burnt area over the 21st century, based on ensemble averages of the simulations

driven by the RCP4.5 and RCP8.5 climate scenarios, for Australia as a whole and for the four subregions used in this study

MAT,mean annual temperature;MAP,mean annual precipitation; a, ratio of actual to equilibrium evapotranspiration; NPP, net primary production. Total land

area for each region is given in parentheses, for comparison with the values for burnt area

MAT (8C) MAP

(mm year�1)

a NPP

(kg C m�2 year�1)

Tree

cover (%)

Fine fuel

(kg m�2)

Coarse fuel

(kg m�2)

Burnt area

(million km2)

Australia

(7.94� 106 km2)

Historic 21 503 0.20 0.29 9.81 0.16 0.80 0.41

RCP4.5 24� 0.56 494� 28 0.19� 0.02 0.35� 0.03 14� 1.57 0.22� 0.02 1.50� 0.13 0.46� 5.96

RCP8.5 25� 0.92 487� 48 0.18� 0.02 0.56� 0.07 22� 4.25 0.28� 0.05 2.10� 0.26 0.51� 11

South-east

(0.35� 106 km2)

Historic 12 832 0.58 0.78 81 1.20 12.1 0.005

RCP4.5 14� 0.33 786� 39 0.56� 0.02 0.97� 0.03 73� 2.59 1.46� 0.26 18.1� 6.00 0.007� 0.11

RCP8.5 16� 0.74 807� 75 0.48� 0.03 1.19� 0.06 74� 3.83 1.68� 0.32 22.5� 6.2 0.01� 0.31

South-west

(0.44� 106 km2)

Historic 17 421 0.26 0.37 17 0.27 0.28 0.037

RCP4.5 20� 0.48 394� 47 0.23� 0.02 0.44� 0.04 22� 3.18 0.33� 0.04 0.47� 0.17 0.052� 0.38

RCP8.5 22� 0.88 351� 58 0.19� 0.03 0.51� 0.10 32� 3.84 0.36� 0.09 0.80� 0.20 0.049� 0.84

Central

(2.18� 106 km2)

Historic 20 251 0.11 0.14 0.81 0.02 0.006 0.06

RCP4.5 23� 0.54 232� 31 0.10� 0.01 0.17� 0.03 0.63� 0.14 0.05� 0.01 0.002� 0.001 0.11� 2.98

RCP8.5 25� 0.88 210� 50 0.08� 0.02 0.22� 0.06 2.62� 1.18 0.06� 0.02 0.003� 0.001 0.15� 4.49

North

(0.81� 106 km2)

Historic 27 1161 0.31 0.50 16 0.22 0.40 0.08

RCP4.5 29� 0.57 1113� 82 0.33� 0.03 0.65� 0.08 37� 9.52 0.36� 0.10 2.90� 1.7 0.05� 0.88

RCP8.5 31� 1.05 1121� 139 0.32� 0.04 0.87� 0.13 62� 13 0.54� 0.19 5.3� 3.0 0.04� 0.62
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burnt area: there is no southward expansion of tropical savanna
in the fixed-CO2 RCP4.5 simulations and grasslands expand in
the fixed-CO2 RCP8.5 simulations (except in the region along

the north-eastern coast). Much larger increases in fire (by
,15%) cause grassland to expand into sclerophyll woodlands in
southern Australia (Fig. 7), reducing the area of sclerophyll

woodlands by 0.32� 106 km2 in RCP4.5 and 0.25� 106 km2 in
RCP8.5. This expansion is even more pronounced in the fixed-
CO2 experiments: in the RCP8.5 simulation, for example,

sclerophyll woodland barely expands beyond the area occupied
by temperate forests in the present day. Thus, increased CO2

offsets the negative impacts of increased fire on sclerophyll
woodlands in southern Australia. The area of warm temperate

broadleaved forest expands during the 21st century by 45 and
104% respectively in the RCP4.5 and RCP8.5 simulations. This
expansion also reflects CO2 fertilisation as the area of warm

temperate broadleaved forest is reduced slightly compared with
present in the fixed-CO2 simulations (Fig. 7).

Evenwithin regions where there is no change in biome by the
end of the 21st century, the simulated changes in climate and fire
regimes result in changes in the character of the vegetation

(Fig. 8). Thus, areas that are characterised as tropical savanna
both today and at the end of the 21st century nevertheless show
an increase in tree cover. The increase in tree cover results from

a large increase in the abundance of non-resprouting trees and
there is a decrease in the relative importance of resprouters in
these ecosystems (Fig. 8). Both the increase in tree cover and the

increase in the relative importance of non-resprouters are
consistent with the simulated decrease in burnt area. In areas
where tropical forests persist, increased fire leads to a decrease
in tree cover overall but an increase in the abundance of

resprouting trees, which partially offsets the decrease in non-
resprouting trees (Fig. 8). Again, both the decrease in tree cover
and the shift in the balance of resprouting to non-resprouting

trees are consistent with the change in fire. Areas that persist as
sclerophyll woodland in south-eastern and south-western
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Australia show an increase in tree cover despite the simulated
increase in fire, and this is reflected in an increase in the
importance of resprouting trees. Areas that persist as grass and

shrubland nevertheless show a small CO2-induced increase in
woody cover. The increase in non-resprouting trees is greater
than the increase in resprouting trees, because they have a

competitive advantage over resprouters in terms of regeneration
from seed in areas of low vegetation density. The incidence of
fire increases but is still limited by fuel availability, and thus is

not a major determinant in the balance between resprouters and
non-resprouters in this ecosystem. The balance between
resprouting and non-resprouting trees is affected by changes

in fire regimes but is also affected by changes in other ecosystem
properties. This is most clearly seen in areas that persist as
temperate forests in south-eastern Australia. The decrease in

tree cover in this region (Fig. 8) is largely driven by increased
aridity, rather than fire. In the absence of a significant increase in
fire, the relative abundance of non-resprouters increases because
they have higher regeneration rates than non-resprouters.

However, the expected impact of a change in fire regime on
the relative abundance of resprouters and non-resprouters is seen
in the comparison of the RCP4.5 and RCP8.5 results, where the

larger increase in fire in the RCP8.5 scenario results in a smaller
relative increase in non-resprouters and a smaller relative
decrease in resprouters (Fig. 8).

Discussion

Previous studies have suggested that the risk of fire, asmeasured
by some form of fire danger index, is likely to increase across
Australia in response to projected future changes in temperature

and precipitation (Williams et al. 2001; Hennessy et al. 2005;
Lucas et al. 2007; Pitman et al. 2007; Fox-Hughes et al. 2014).
There is a robust increase in fire danger at the end of the

21st century in the RCP8.5 scenario over almost the entire
continent (Fig. 4). The extent of the region characterised by
increased fire danger by the end of the 21st century is more

limited in the RCP4.5 simulations but nevertheless most of
western and central Australia shows an increase in fire danger.
However, increased fire danger does not map on to changes in
burnt area. Our simulations show reduced burnt area in northern

Australia despite a significant and robust increase in fire danger.
This reflects the fact that changes in vegetation density and in
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therefore have the sense here of the impact of CO2 fertilisation on the
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Table 5. Summary of changes in vegetation parameters and burnt area over the 21st century, based on ensemble averages of the simulations driven

by the RCP4.5 and RCP8.5 climate scenarios but with CO2 held constant at the 2006 level of 380.8 ppm (fixed-CO2 experiment)

NPP, net primary production

NPP (kg C m�2 year�1) Tree cover (%) Fine fuel (kg m�2) Coarse fuel (kg m�2) Burnt area (million km2)

Australia (7.94� 106 km2) Historic 0.29 9.81 0.16 0.80 0.41

RCP4.5 0.26� 0.03 8.28� 0.62 0.14� 0.01 0.80� 0.11 0.36� 4.89

RCP8.5 0.23� 0.03 6.31� 1.12 0.10� 0.01 0.48� 0.07 0.28� 6.80

South-east (0.35� 106 km2) Historic 0.78 81 1.20 12.1 0.005

RCP4.5 0.83� 0.03 69� 1.98 1.06� 0.16 10.7� 3.20 0.004� 0.09

RCP8.5 0.81� 0.04 56� 6.59 0.73� 0.06 0.58� 5.90 0.006� 0.27

South-west (0.44� 106 km2) Historic 0.37 17 0.27 0.28 0.04

RCP4.5 0.35� 0.04 13� 2.09 0.25� 0.03 0.36� 0.06 0.04� 0.50

RCP8.5 0.28� 0.05 8.02� 2.19 0.19� 0.04 0.35� 0.05 0.03� 0.92

Central (2.18� 106 km2) Historic 0.14 0.81 0.02 0.006 0.06

RCP4.5 0.12� 0.02 0.21� 0.06 0.02� 0.01 0.003� 0.001 0.06� 1.91

RCP8.5 0.10� 0.02 0.08� 0.04 0.01� 0.01 0.002� 0.001 0.04

North (0.81� 106 km2) Historic 0.50 16 0.22 0.40 0.08

RCP4.5 0.43� 0.06 16� 3.53 0.15� 0.05 0.93� 3.90 0.08� 0.61

RCP8.5 0.37� 0.09 14� 5.73 0.10� 0.05 0.58� 0.33 0.07� 0.78
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the nature of the available fuel can significantly affect the spread
of fire. Similarly, the areas of southern Australia that show the
largest increases in fire danger are not the areas that show the
largest changes in burnt area. In the RCP4.5 scenario runs,

regions in south-eastern Australia that show reduced fire danger
actually show an increase in burnt area. Again, the increase in
burnt area in this region reflects the role of vegetation changes –

in particular the increase in fuel loads – in modulating fire
regimes. Fire danger indices were developed as a management
tool to predict the likelihood of fire in response to changes in

fire-promoting weather conditions (McArthur 1973; Deeming
et al. 1977; Van Wagner 1987; Matthews 2009). They are not
appropriate tools to examine the consequences of long-term
changes in climate, changes that impact vegetation properties

directly, on fire regimes.
The direct effects of increasing CO2 on vegetation produc-

tivity and water-use efficiency influence simulated fire regimes.

CO2 effects tend to increase fuel loads and fuel continuity in arid
regions where fuel rather than climate conditions currently

limits the occurrence of fire. However, in more wooded regions,
CO2 leads to increased vegetation density and this generally
reduces burnt area. The role of increasing CO2 on vegetation
productivity and fuel loads has been highlighted as the dominant

cause of changing fire regimes on glacial–interglacial times-
scales (Martin Calvo et al. 2014). Increased productivity and
fuel loads, and increased vegetation density, have also been

identified as a response to CO2 fertilisation in simulations of
21st century changes in fire regimes and emissions made with
themodel LPJ-GUESS-SIMFIRE (Knorr et al. 2016b), although

the impact on burnt area was not quantified. The projections of
future fire regimes used in the recent Intergovernmental Panel
on Climate Change (IPCC) report (Settele et al. 2014) were
based on statistical modelling from Moritz et al. (2012), which

cannot account for the independent effects of changes in CO2 on
fuel loads. Fire-enabled DGVMs, which explicitly simulate the
impact of CO2 on fuel loads, are more appropriate tools to

examine the consequences of long-term changes in climate on
fire regimes.
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According to our simulations, the overall increase in burnt
area over the course of the 21st century is comparatively small,

with only an additional 1% of the continent burnt each year
compared with today. There are, however, shifts in the spatial
patterns of burning with increased burnt area in woodland
regions in the south and decreased burnt area in the north, and

these shifts are likely to have important consequences on the
economic impacts of fire (Ashe et al. 2008; Crompton and
McAneney 2008; Stephenson et al. 2012; Hughes and Steffen

2013). Nevertheless, although the changes in fire are muted, the
combined effects of changing climate, atmospheric CO2 con-
centration and fire regimes have large impacts on ecosystems.

According to our simulations, 22% of the continent will be
affected by changes large enough to cause a shift in biome type
under the RCP4.5 scenario, whereas 49% of the continent will
be affected by biome shifts in the RCP8.5 scenario. The area of

tropical forests increases by ,218% (648%) and the area of
tropical savannas by,45% (200%) by the end of the century in

the RCP 4.5 (RCP8.5) scenario. At the same time, the area of
sclerophyll woodlands decreases by ,13% (23%) and the area

of grass and shrublands by,9% (43%) by the end of the century
in the RCP 4.5 (RCP8.5) scenario. Even in regions where the
combined influence of climate, CO2 and fire is insufficient to
cause biome changes, there are changes in the relative abun-

dance of different PFTs. Although we have focused on changes
in tree cover and in the abundance of resprouting trees, because
of the potential feedbacks between these vegetation parameters

and fire, the simulations also show large shifts in the abundance
of evergreen versus deciduous trees or between broadleaf and
needleleaf trees in specific regions. These changes in ecosystem

properties could have significant impacts on biodiversity and
ecosystem services (Steffen et al. 2009; Booth 2012).

Human-set fires are a major component of modern-day fire
regimes in many regions of the world and may affect both the

type and timing of fires (Archibald et al. 2013). Human-set fires
are a major management tool in northern Australia, for example,
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and have been invoked to explain the large area burnt there
annually (Murphy et al. 2013). However, in contrast to many
other fire models, LPX-Mv1 does not include anthropogenic

ignitions. Our motivation for this is that the number of ignitions
is not a limiting factor on overall burnt area at a regional scale;
regional analyses have shown that burnt area is strongly con-

trolled by fuel availability and fuel moisture (Bistinas et al.

2014; Knorr et al. 2016a). Indeed, the apparent relationship
between population density and burnt area (which forms the

basis for the parameterisation of human ignitions in other fire
models: Hantson et al. 2016) is an artefact due to the causal
correlations between population density, vegetation productivity
and aridity (Bistinas et al. 2014). Lack of anthropogenic ignitions

does not explain the underestimation of burnt area in northern
Australia in our simulations, which is a result of simulated fuel
loads being too wet throughout the year and is not improved by

increasing or changing the timing of ignitions.
The RCP4.5 and RCP8.5 scenarios represent a moderate and

a high-end increase in radiative forcing over the 21st century,

leading to an increase in global temperature of 1.8 � 0.7 and
3.7� 1.18C respectively by the end of the century. However, our
simulations do not take into account possible increases in the

frequency of lightning associated with warming temperatures
and increased convection because of the large uncertainty about
the quantitative relationship between these variables. Increases
in the number of lightning strikes may lead to increases in

ignitions, but this would not necessarily translate into an
increase in fire – there is an increasing amount of evidence
indicating that the number of ignitions is not the limiting factor

on biomass burning globally (Bistinas et al. 2014; Knorr et al.
2016b). Nevertheless, changes in lightning ignitions could be
important at a regional scale and it would be useful to take such

changes into account. Our results involve a further simplifica-
tion in that we do not include anthropogenic fire suppression, or
how thismight change in response to the growth of population or
changing patterns of human settlement. Although this decision

was largely pragmatic, it also reflects the fairly simple approach
to treating fire suppression in state-of-the-art models (Hantson
et al. 2016).

The trajectory of future climate and CO2 change is uncertain
and our focus on the RCP4.5 and RCP8.5 scenarios therefore
arbitrary. Furthermore, there are non-negligible differences in

the response of different climatemodels to these changes and the
use of an ensemble of models does not guarantee that the
average state is realistic (Tebaldi and Knutti 2007; Knutti

2010). Furthermore, LPX-Mv1 itself has regional biases in both
the amount of vegetation cover (and hence fuel loads) and in the
simulated burnt area under modern conditions. These biases
likely affect the absolutemagnitude of simulated changes during

the 21st century, although they should not affect the direction
and relative magnitudes of change. Thus, for many reasons, our
results are indicative rather than definitive statements about the

likely changes in regional fire regimes and vegetation during the
21st century across Australia. However, process-based model-
ling provides a tool for addressing the complexity of the

interaction between vegetation and fire, and these simulations
show that future fire regimes are influenced by these interac-
tions. The projections should provide a more robust basis for
developing fire management and mitigation strategies.

Conclusion

Simulations with the LPX-Mv1 DGVM show an increase in

burnt area of between 12 and 24% by the end of the 21st century
under the RCP4.5 and RCP8.5 scenarios. The change in burnt
area is modest given the simulated changes in climate and the

large increases in climate-determined ‘fire risk’ as measured by
the McArthur Fire Danger Index. CO2-induced changes in
vegetation productivity modulate the direct climate impacts on

fire regimes, leading to increased burnt area in currently fuel-
limited regions but decreasing burnt area in many forested
regions. Changes in fire regimes in turn affect natural ecosys-
tems, leading to changes in the relative abundance of types of

plant (grass versus trees, resprouters versus non-resprouters)
within ecosystems and substantial shifts in the distribution of
major vegetation types. Process-based modelling makes it

possible to account for the complex two-way interactions
between fire and vegetation and thus to make projections of the
response of both to future climate changes. There are uncer-

tainties associated with future climate projections and in the
modelling of vegetation and fire responses to climate change.
Nevertheless, the simulations presented here offer a firmer

foundation for understanding future climate impacts on fire and
vegetation than approaches based on extrapolation frommodern
climate–fire relationships.
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