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Abstract. Obtaining an accurate estimate of the area of burned crops through remote sensing provides extremely useful
data for the assessment of fire-induced trace gas emissions and grain loss in agricultural areas. A new method,

incorporating the Vegetation Difference Index (VDI) and Burn Scar Index (BSI) models, is proposed for the extraction
of burned crops area. The VDI model can greatly reduce the confounding effect of background information pertaining to
green vegetation (forests and grasslands), water bodies and buildings; subsequent use of the BSI model could improve the

accuracy of burned area estimations because of the reduction in the influence of background information. The combination
ofVDI andBSI enables theVDI to reduce the effect of non-farmland information, which in turn improves the accuracy and
speed of the BSI model. The model parameters were established, and an effects analysis was performed, using a
normalized dispersion value simulation based on a comparison of different types of background information. The efficacy

of the VDI and BSI models was tested for a winter wheat planting area in the Haihe River Basin in central China. In
comparison with other models, it was found that this method could effectively extract burned area information.
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Introduction

Farmers worldwide often remove excess crop residue from
fields by burning farmland. The economic benefits of crop

residue utilisation are not high, and burning is a quick and
cheapermanagementmethod. Fire can also removeweeds, pests
and diseases, enabling farmers to prepare the next crop

(McCarty et al. 2009). In the early ripening season (mostly early
June) in winter wheat planting areas such as the Haihe River
Basin in northern China, it is easy for farmers to lose control of
fires owing to dry weather, wind and other natural factors. This

can result in the loss of unharvested crops. Frequent farmland
fires have serious consequences, such as fire-induced trace gas
emissions (Andreae and Crutzen 1997; Andreae and Merlet

2001; Yang et al. 2008; Hao and Larkin 2014) and grain loss.
Farmland fires that spread to neighbouring grasslands and for-
ests are also one of the main causes of wildland fires (Houghton

et al. 2000). Some of these fires are caused by stubble and straw
burning, whereas others involve the burning of mature crops and

are made worse by dry conditions (Maingi and Henry 2007;
Vadrevu and Lasko 2015). Because of the randomness and rapid
spread of fires on farmland such as the winter wheat planting

area in the Haihe River Basin, fire managers find it difficult to
determine the location of fires and measure the extent of burned
area. Retrieval of accurate burned area data is essential for

determining the source of wildland fire, and modelling air
pollution and grain loss (França et al. 2014).

Most previous studies estimating burned area through remote
sensing have classified images using principal component

analysis and vegetation indices (Carlson and Ripley 1997;
Chuvieco et al. 2002; Domenikiotis et al. 2002; Hudak and
Brockett 2004;Mitri andGitas 2004;Kučera et al. 2005; Loboda

et al. 2007;Maingi andHenry 2007; Smith et al. 2007; Chuvieco
et al. 2008; Palandjian et al. 2009; Stroppiana et al. 2009;
Boschetti et al. 2010; Bastarrika et al. 2011; Parker et al. 2015).

Many studies have relied on the Normalized Difference Vege-
tation Index (NDVI), including modified versions to reduce the
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sensitivity of the index to different atmospheric and soil condi-
tions (Chuvieco et al. 2002; Domenikiotis et al. 2002; Kučera
et al. 2005; Stroppiana et al. 2009; Veraverbeke et al. 2011a).

Some of these modified NDVI indices, such as the Enhanced
Vegetation Index (EVI), Soil Adjusted Vegetation Index
(SAVI) and Modified Soil-Adjusted Vegetation Index

(MSAVI), have been used effectively for burned area estimation
in a range of habitats such as forests and grasslands (Huete 1988;
Pinty and Verstraete 1992; Qi et al. 1994; Huete et al. 2002).

Some researchers have also proposed other spectral indices,
such as the Burned Area Index (BAI) and Normalized Burned
Ratio (NBR) (Chuvieco et al. 2002; French et al. 2008;
Veraverbeke et al. 2010b; Araújo and Ferreira 2015), which

are particularly sensitive to the spectral features of a burned
area. However, the existence of different land types can easily
lead to spectral confusion for burned areas and spectrally similar

areas, such as water bodies, roads and buildings, which results in
uncertainties in burn scar models, largely due to the difficulty in
determining threshold values for these models (Lasaponara

2006; Stroppiana et al. 2009; Boschetti et al. 2010; Veraverbeke
et al. 2011a, 2011b; Boschetti et al. 2015). To deal with this type
of spectral complexity (spectral mixing), various models and

methods have been used to highlight fire-induced changes in
pre- and post-fire imagery; however, this can potentially create
additional constraints in relation to image-to-image normal-
isation (Conghe Song andWoodcock 2003; Verbyla et al. 2008;

Veraverbeke et al. 2010a, 2010b, 2011a, 2011b).
A few remote sensingmethods have been used to extract burn

scar information, with a focus mainly on forests, grasslands and

other non-farmland land types. Only a few models and methods
have addressed the issue of identifying burned areas within
farmland. Cultivated land is often distributed unevenly and

characterised by a mixture of different land-use types, such as
rural settlements, mines, water conservation and irrigation
facilities, rivers, lakes and asphalt roads. As a result, different
land types often share the same spectra, which creates interfer-

ence when burn scar information is extracted from remote
sensing data. In addition, because of differences in crop types
and planting times, the distribution of crop stubble, as well as the

presence of mature and non-mature crops, is likely to cause
interference, leading to uncertainty in estimations of burned
crop area.

The main purpose of the present study was to develop a
method for effectively extracting information on the burned
crop area caused by agricultural fires from remotely sensed data.

Considerable spectral confusion exists in relation to distinguish-
ing burned areas from areas with similar surface features in
monotemporal imagery (Lasaponara 2006; Stroppiana et al.

2009; Veraverbeke et al. 2011b). The following issues are of

considerable importance regarding the extraction of precise
information on burned areas: (1) the method should allow rapid
identification of the spatial distribution ofmature crops in such a

way that researchers can determine the possible range of a
burned area, and can reduce the complexity of background
information; (2) furthermore, the method can clearly highlight

burned areas and integrate different types of background infor-
mation, for example on mature crops and stubble.

To test the accuracy of the proposed method in determining
the locations of burned areas, we selected the winter wheat

planting area in the Haihe River Basin. The growth curve
features extrapolated from a time series of Moderate Resolution
Imaging Spectroradiometer (MODIS) data; based on this, two

NDVI images extracted from Landsat 8 data were selected for
this area. Burned areas with different spectral features, based on
the band features of Landsat 8 data, were analysed and a burn

scar index (BSI) was then constructed for extracting information
on the burned area. Model application and validation were
conducted for the winter wheat planting area of the Haihe River

Basin. The method greatly improved the accuracy of satellite
image-based burn scar estimates of burnt areas resulting from
farmland fires. It can also be used to determine the local and
regional contributions of particulate and trace gas emissions,

which affect both air quality and public health (McCarty et al.

2009; Li et al. 2014; Chen et al. 2017).

Study area, data collection and data processing

Study area

The Haihe River Basin, China’s major grain production base, is
located in central China, and covers a total area of 318 200 km2.
The study area is located west of the Haihe River Basin and the

main grain crops include winter wheat and maize, as shown in
Fig. 1. The mean annual temperature in the study area ranges
from 12.7 to 13.78C, whereas the mean annual precipitation is

about 600 mm, based on data from the Anyang Meteorological
Bureau. Only sparse precipitation occurs during spring and the
air is generally dry; therefore, winter wheat normally requires
irrigation. After the winter wheat reaches maturity or is
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Fig. 1. Location of the Haihe River Basin, China. The study area is located

to the south of the Haihe River Basin and is shown by the red box.
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harvested, prescribed fires or wildfires in farmland areas may
cause serious air pollution and a loss of grain harvesting
opportunities. On 9 June 2015, an agricultural wildfire disaster

resulted in the loss of many human lives and large amounts of
grain in the study area.

Data collection

Soil, winter wheat and burned area spectral data were collected
through field experiments during winter wheat growth and
maturity periods. Winter wheat spectral data were collected from

4 April to 3 June in both 2001 and 2002, and stubble and burn
spectral data were collected from 9 to 14 June 2015.

An ASD FieldSpec3 spectrometer (Analytical Spectral
Devices, Boulder, CO, USA) and a PSR spectrometer (Spectral

Evolution Co., Lawrence, MA, USA) were used for field data
collection. These devices have a bandwidth between 350 and
2500 nm, a viewing angle of 258 and a height of 20 cm to the

measured sample.Measurements were conducted on sunny days
with favourable visibility according to the criterion of 3 days in a
row without precipitation prior to spectral measurement. The

areas surrounding the measurement points were broad, with no
large obstructions, and the measurements were conducted at the
local time of 1000–1400 hours. Each sample was measured

10 times, and the average reflectance of each sample was then
calculated. The total collected sample number was 212. Portions
of the spectrum near 1900 nm were removed because of noise.

Data processing

A time series ofMODIS 09A data products was selected for crop
growth curve analysis. Landsat 8 reflectance data were used for
the vegetation difference index (VDI) and BSI models, and

Gaofen-1 satellite (GF-1) (Jia et al. 2016) data were used for
model validation (Table 1). A topographic map with a scale of
1 : 100 000, and some latitude and longitude coordinates, were

derived from a Google Earth map of the study area, enabling
geometric rectification to be conducted.

ENVI software (ver. 4.8; ITT Visual Solutions, Boulder, CO,

USA) was used for spatial geometric precision correction. The

correction was accurate to within half a pixel, which enabled
transformation of the data into a universal transverse Mercator
(UTM) projection.

Method and model

All analyses of the burned area estimates for the study region
were conducted using ENVI software (ver. 4.8). Fig. 2 is a
flowchart of the steps implemented to satisfy the study objec-

tives. The methodology can be divided into four parts:
(i) deriving a crop phenology curve from a time series ofMODIS
NDVI data, which is used to select the date of the TM image. The
reference TM image was obtained during the vigorous growth

period of the winter wheat; the monitored TM image was
obtained just after the fire; (ii) development of a burned area
extractionmethod based onVDI andBSI; (iii) cross-comparison

with the results from a previousmodel (Table 2); and (iv) burned
area simulation using VDI and BSI.

Spectral analysis of the typical underlying surfaces
in the study area

Ground spectral measurements of the typical underlying surfaces

in the study area were conducted using a portable ground object
spectrometer (Model PSR-3500m Spectral Evolution Co.), with
the spectrum ranging from 400 to 2500 nm (Figs 3 and 4).

Moisture absorptionbands at 1360–1420 and1780–1986 nmwere
removed from the curves.

As shown in Fig. 4, the winter wheat reflectance spectrum for
the filling stage peaked at 530 and 1610 nm, with absorption

troughs at 680 and 1420 nm and a high reflection region between
760 and 1300 nm. The trend in the variation of the spectrum for
mature winter wheat was similar to that of green winter wheat,

although the reflection peaks and absorption valleys were more
obvious in the former. The reflection peaks and absorption
troughs of mature winter wheat in the infrared region (760–

1100 nm) were lower than those at the filling stage, whereas in
the other bands, they were higher.

The trend in the variation of the burned area spectrum was

similar to that of the stubble and soil spectra throughout the

Table 1. Sources for the remote sensing data employed in the present study

Abbreviations: MODIS, Moderate Resolution Imaging Spectroradiometer; GF-1, Gaofen-1 satellite; NIR, near-infrared; SWIR, short-wave infrared

Satellite

data

Acquisition

time

Path

and row

Spatial

resolution (m)

Spectral

resolution (mm)

Product

grade

Source

MODIS 1 January to

28 December 2014

h27v05 250 0.62–1.4385 (36 bands) MOD09Q1 http://www.gscloud.cn/ (20 March 2018)

Landsat8 2 May to

10 June 2015

124/05 30 Coastal (0.433–0.453) Reflectance http://earthexplorer.usgs.gov/

(20 March 2018)Blue (0.450–0.515)

Green (0.525–0.600)

Red (0.630–0.680)

NIR (0.845–0.885)

SWIR 1 (1.560–1.660)

SWIR 2 (2.100–2.300)

Cirrus (1.360–1.390)

GF-1 11 June 2015 856/519 2 (pan) 0.45–0.52 L1A http://www.cresda.com/EN/satellite/7155.shtml

(20 March 2018)0.52–0.59

856/520 8 (multispectral) 0.63–0.69

0.77–0.89
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entire spectral range. The reflectance of the burned area was
generally weak in the 400–1800-nm band range, while it was
higher than that of mature winter wheat and the filling stage at

1800–2500 nm. The curve in the 1800–2500-nm region was
similar to those of soil and stubble. This result was similar to that
reported in previous studies (Lasaponara 2006; Smith et al.

2007; Chuvieco et al. 2008). The purpose of the ground
spectral measurements was to obtain the features of different
underlying surfaces and then use them to select bands from

Thematic Mapper (TM) images. For certain features, the
second to seventh TM bands overlapped the spectrum curves
measured by the spectrometer, as shown by the short horizon-
tal lines in Fig. 4.

Time series of the NDVI analysis

For the VDI parameters NDVIref and NDVImoni, NDVIref in the
subtrahend represents the NDVI value during the growth period,
and NDVImoni represents the NDVI value during the mature

period. An analysis of the NDVI curves for different growth
stages of the typical underlying surfaces was conducted in the
Haihe River Basin (Fig. 5). TheNDVI curve from the time series

of the MODIS data was used to analyse trends in the NDVI with
respect to differences between crop area and other typical
underlying surfaces, such as forests and grasslands, and cities

and towns. The time series of NDVI values for winter wheat
began to increase from Julian day 40 and peaked between Julian

Table 2. Spectral indices used in this study

Abbreviations: R, red; NIR, near-infrared; SWIR, short-wave infrared; LSWIR, longer short-wave infrared; L, adjusted parameter

Model Abbreviation Formula Reference

Soil Adjusted Vegetation Index SAVI SAVI ¼ ð1þ LÞ NIR � R

NIR þ Rþ L
with L ¼ 0:5 Huete 1988

Burned Area Index BAI BAI ¼ 1

0:1þ Rð Þ2 þ 0:06þ NIRð Þ2 Chuvieco et al. 2002

Normalized Burn Ratio NBR NBR ¼ NIR � LSWIR

NIR þ LSWIR
Key and Benson 2006

Char Soil Index CSI CSI ¼ NIR

SWIR
Smith et al. 2007

Mid-Infrared Burn Index MIRBI MIRBI ¼ 10LMIR � 9:8SMIR þ 2 Trigg and Flasse 2001

Data source:
TM data of the study area

Data selection:
Reference and monitored TM data

Reflectance of
the reference TM data

Reflectance of the
monitored TM data

Model: NDVI

Model: VDI

NDVIref NDVImoni

Data source:
Time series of MODIS NDVI data

Analysis:
Information extraction and crop
phenology curve and its feature

Simplified background:
distribution of stubble and mature crop

Result:
burned area and distribution

Model: BSI

m value
estimation

Fig. 2. Overview of the methodology implemented in this study. Abbreviations: BSI, Burn Scar

Index; VDI, Vegetation Difference Index; MODIS, Moderate Resolution Imaging Spectroradi-

ometer; NDVIref, Normalized Difference Vegetation Index of the reference remote sensing image;

NDVImoni, Normalized Difference Vegetation Index of the monitored remote sensing image.
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days 90 and 120, when the curve began to decline, reaching its
lowest value at approximately Julian day 170 (Fig. 5).

In comparison with the NDVI curves of forests and grass-

lands, and of cities and towns, the NDVI curves of the winter

wheat were higher before Julian day 140, but declined before
Julian day 170. From the above analysis, it is clear that theNDVI
curve of winter wheat changed over time, and was also different

from that of forests and grasslands as well as cities and towns.

The models and their parameters

The VDI model

Based on the above time series of NDVI curve analysis, a

VDI was developed, and specific models and parameters were
configured as below:

VDI ¼ NDVIref � NDVImoni; ð1Þ

where the NDVI is given by RNir � RRedð Þ= RNir þ RRedð Þ. RNir

and RRed are the fifth (near-infrared (NIR)) and fourth (red) bands
of the Landsat 8 sensor respectively. NDVIref in the equation

represents the NDVI value during the growth period and
NDVImoni represents the NDVI value during the mature period.
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Fig. 4. Spectrum curves of the typical underlying surfaces in the study area overlapped with

Thematic Mapper (TM) bands. The continuous spectrum curves were measured using a

spectrometer, and the short horizontal lines are the second to seventh TM bands of the

corresponding underlying surfaces.
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Fig. 5. Changes in wheat phenology over 1 year obtained from MODIS

time series data.

(a) (b) (c)

Fig. 3. Photographs of mature winter wheat (a), stubble (b) and burned areas (c) within the study area.
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The BSI model and its parameters

Previous observations and analyses (Veraverbeke et al.

2011a) demonstrated a low discriminatory power for the visible
spectral region, and indicated that the highest sensitivity is in the

short-wave infrared (SWIR) spectral region.
The specific parameters of the BSI are described below.

Background features such as soil, stubble and mature crop, can

be defined as:

BSI ¼ RSW � RRedð Þ
RSW þ RRedð Þ Rm

Green
þ Rm

Red
þ Rm

Nir

� � ; ð2Þ

where RSW, RRed, RNir, and RGreen are Landsat 8 bands 7 (SWIR
2), 4 (red), 5 (NIR) and 3 (green) respectively. The equation
RSW � RRedð Þ= RSW þ RRedð Þ is proposed based on spectral
analysis of the relationship between the burned area and the

background information. The RSW value of a burned area is
similar to those of soil and stubble, and is higher than that of a
mature crop. However, the RRed value of a burned area is lower

than those of soil, stubble and mature winter wheat. In the
denominator,m is an adjustment factor. An appropriate value of

m for Rm
Green

þ Rm
Red

þ Rm
Nir

� �
can highlight burned areas, reduce

the influence of background information, and reduce differences

between the different types of background information (thereby
reducing uncertainty in the estimation of burned areas). A value
of 4 for m was considered appropriate for the present study

according to the simulation analysis (Tables 3 and 4).

C denotes comparison between various types of background
information and the information valuable for the BSI.

CðSB vs SÞ ¼ S � S B
�� ��; ð3Þ

CðMB vs SÞ ¼ S �M B
�� ��; ð4Þ

CðMB vs SÞ ¼ S �M B
�� ��; ð5Þ

CðMB vsMÞ ¼ M �M B
�� ��; ð6Þ

where S B is the mean BSI of the burned stubble area retrieved

from a Landsat 8 image, M B is the mean BSI of the burned
mature crop area in the same image, S is the mean BSI of the
unburned stubble area, and M is the mean BSI of the unburned
mature crop area. C() is the difference between the two com-

pared parameters; the larger the value of C(), the greater the
difference between the two compared parameters. The propor-
tions of these different land-cover types within burned and

unburned areas were validated by field sampling and high-
resolution satellite images (i.e. GF-1 data). Based on the
classification results for the Landsat 8 image, the locations of

the samples were obtained and the mean value of each cover
type was calculated.

To facilitate the analysis, the range of C() was normalized to

(0,1) (Wang et al. 2015). Cmax is the maximum value of
CðSB vs SÞ, CðSB vsMÞ, CðMB vs SÞ and CðMB vsMÞ, calcu-
lated as follows:

ND SB vs Sð Þ ¼ CðSB vs SÞ=Cmax; ð7Þ

ND SB vsMð Þ ¼ CðSB vsMÞ=Cmax; ð8Þ

ND MB vs Sð Þ ¼ CðMB vs SÞ=Cmax; ð9Þ

ND MB vsMð Þ ¼ CðMB vsMÞ=Cmax; ð10Þ

where NDðSB vs SÞ, NDðSB vsMÞ, NDðMB vs SÞ, and

NDðMB vsMÞ are the normalized values of CðSB vs SÞ,
CðSB vsMÞ, CðMB vs SÞ, and CðMB vsMÞ respectively.

Results and discussion

Estimation of m

By retrieving the values of S B, M B, S and M for the study area

fromaLandsat 8 image, a set ofmvalues from0 to 10was obtained
in increments of 0.5. The m values of 0, 2, 4 and 6 were selected
and used in example calculations. Then, the BSI and C() values
were calculated, as shown in Table 3. The maximum values of

CðSB vs SÞ, CðSB vsMÞ, CðMB vs SÞ, and CðMB vsMÞ were
calculated for different values of m. NDðSB vs SÞ, NDðSB vsMÞ,
NDðMB vs SÞ, and NDðMB vsMÞ were calculated as shown in

Table 4. Fig. 6 shows the four ND() curves with m values ranging
from0 to 10, in increments of 0.5.AnND() value of 1 indicates that
the two parameters being compared are totally distinct, whereas

the closer the value is to 0, the less distinct are the parameters. In
Fig. 6, in a comparison of the differentm values for the BSImodel,
each of the four ND() curves reaches a saturation value whenm is

Table 3. Comparison of Burn Scar Index (BSI) values of typical

underlying surfaces and C() values for different m values(the bold

number is the biggest C() value of each m value)

See text for definition of terms

C BSI-0

(m¼ 0)

BSI-2

(m¼ 2)

BSI-4

(m¼ 4)

BSI-6

(m¼ 6)

S B 0.155 3.172 154.127 6462.467

S B 0.269 5.422 259.517 10976.981

S 0.095 0.873 16.089 245.779

M 0.229 1.367 17.601 191.191

C(SB vs S) 0.06 2.299 138.038 6216.688

C(SB vs M) �0.074 1.805 136.526 6271.276

C(MB vs S) 0.174 4.549 243.46 10731.2

C(MB vs M) 0.04 4.055 241.948 10785.79

Table 4. Comparison of the Burn Scar Index (BSI) values of typical

underlying features and ND() (normalized C()) values for different

values of m

See text for definition of terms

(/Cmax) BSI-0 BSI-2 BSI-4 BSI-6

/0.174 /4.549 /243.46 /10785.79

ND(SB vs S) 0.3448 0.5054 0.5670 0.5764

ND(SB vs M) �0.425 0.3968 0.5608 0.5814

ND(MB vs S) 1 1.000 1 0.9950

ND(MB vs M) 0.2299 0.8914 0.9938 1
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close to 4. A BSI model in which m ¼ 4 has a high compression
capability and can provide detailed background information.

Verification of the VDI and BSI models

Verification of the VDI model

The VDImodel was prepared using twoNDVI images extracted
from Landsat 8 data (Fig. 7) and 950 groups of BSI values were
obtained from field samples and high-spatial-resolution GF-1

satellite data. The 2-m-resolution GF-1 remote sensing fusion
data were based on the multispectral and panchromatic bands

images by using the Nearest Neighbor Decision (NND) fusion
method. The overall precision of the model exceeded 95% with
respect to estimation of mature winter wheat and stubble areas.

Mature winter wheat data could be extracted with the VDI
model by setting a threshold, with the results indicating that an
obvious difference between NDVIref and NDVImoni values

allowsmore effective extraction. Therefore, a large NDVI value
as NDVIt0 and small NDVI value asNDVIt should be selected to
present a very different trend in the change in forest and

grassland and cities and towns, from that in winter wheat cover
between Julian days 140 and 170 (Fig. 8).

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

0 1 2 3 4 5 6 7 8 9

N
D

m value

ND(MB VS. M) ND(MB VS. S) ND(SB VS. M) ND(SB VS. S)

Fig. 6. Comparison of the four types ofND() value for the Burn Scar Index (BSI)model according to different

values of m.

0.9

�0.4

0.9

�0.4

(a) (b)

Fig. 7. Normalized Difference Vegetation Index (NDVI) values on Julian days 145 (a), and 161 (b) using Landsat 8 reflectance data.
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Verification of the BSI model

The accuracy of the BSI model was verified through an inter-

comparison of 286 groups of Landsat-based BSI values with
objects observed in high-resolution satellite imagery and field
surveys. The accuracy assessment was performed within a short

period of time after Landsat data acquisition. The validated
burned area, roads and crop residue were obtained by field
surveys and high-resolution remote sensing images (GF-1). The
specific features corresponding to each class were digitised in

the high-resolution images. The digitised features representing
burned area, crop residue and roads were then used to produce a
random stratified point sample for each class. Finally, this

random sample of points was used as the ground truth for
accuracy assessment of the Landsat-based classification. The
false-positive, false-negative, missing alarm and false alarm

(Table 5) rates were found to be acceptable according to evalu-
ation of the target detection accuracy (Burke et al. 1988; Lienhart
and Maydt 2002; Dumitrescu et al. 2003; Tyre et al. 2003).

Compared with other models, such as SAVI, the Char Soil

Index (CSI) andBAI, the newmethod presented herein is clearly
more effective for estimating burn scar areas.

Based on theBSI data in Fig. 9, a number of conclusions can be

drawn. (1) The BSI model can estimate burned areas, such as in

Fig. 9c, but shadows from clouds may result in misidentification

(as seen in Fig. 9f) due to spectral differences between shallow
cloud, smoke and burned areas. (2) Burned areas differed
markedly in shape and size (Fig. 10). Large areas represent severe

wildfires in mature winter wheat or stubble areas; within these
areas, some of the fires were natural wildfires, whereas others
were caused by straw burning. (3) A large number of burned

areas were apparent in the images, indicating that agricultural

(a) (b) (c)

(d ) (e) (f )

Fig. 8. Estimation of the area of mature winter wheat according to the VDI model. (a), (b), (d), and (e) were derived from Landsat 8 bands 6 (short-wave

infrared (SWIR) 1), 5 (near-infrared (NIR)) and 4 (red) on Julian days 145 and 161. In Fig. 8, (a) is the burned area, (b) and (e) are stubble, and (c) is mature

winter wheat. In Fig. 8b, e, the letter ‘a’ stands for the underlying surface of the city and town, ‘b’ and ‘e’ for stubble, ‘d’ for water body, ‘g’ for water body

and ‘h’ for cloud; the blue part in (c) and (f) indicatesmaturewinter wheat or stubble areas. The red square is generated by the image processing software, no

meaning here.

Table 5. Precision analysis of burned areas based on the Burn Scar

Index (BSI) model

Abbreviations: SAVI, Soil Adjusted Vegetation Index; CSI, Char Soil

Index; BAI, Burned Area Index; NBR, Normalized Burned Ratio; VDI,

Vegetation Difference Index; BSI, Burn Scar Index

Model False

positive (FP)

False

negative (FN)

Missing alarm

rate (MAR)

False alarm

rate (FAR)

VDI and BSI 28 49 0.098 0.160

SAVI 77 73 0.269 0.259

CSI 68 57 0.238 0.192

BAI 51 61 0.178 0.206

NBR 45 69 0.157 0.226
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wildfires generally occur during the winter wheat harvesting

season, and these fires may cause air pollution and grain loss.

Conclusions

To summarise, the following conclusions can be drawn.
(1) Accurate identification of a crop planting area requires
highly precise information on burned areas. During the harvest

period, wildfires are often caused by prescribed fires that were
set to burn crop straw or stubble. These wildfires are a direct
cause of air pollution and grain loss, especially in north

and north-east China (Shi et al. 2014; Long et al. 2016).

The occurrence of wildfires is related to local climatic condi-

tions and land-management practices. Therefore, local fire
management personnel need to monitor both prescribed fires
and areas affected by wildfires. (2) The VDI model may effec-

tively simplify background information during monitoring of
burned areas. Using to differences between the growth curves of
crop areas and sources of background information, the VDI
model was developed, which can be used to effectively estimate

mature crop areas in regions where wildfires may occur.
Through the use of the VDI model, certain types of background
information, such as the locations of water bodies, grasslands

and roads can be filtered out, with the result that the BSI model

(a) (b) (c)

(d ) (e) (f )

(g) (h) (i)

a

b

c

Fig. 9. Burned area estimates for different underlying surfaces (the letter ‘a’ and the other large red patches in (c) indicate areas burned by wildfires; the

letter ‘b’ in (f) denotes cloud shadows, whereas ‘c’ in (i) indicates smoke from straw burning).
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may be more effective for estimating burned areas. (3) The
simulations and experiments conducted during this study
showed that the BSI model was moderately reliable in deter-
mining crop areas. The parameters used in the BSI model were

applied to the winter wheat planting area in the Haihe River
Basin. The results showed that the BSI model may be suffi-
ciently precise for monitoring burned areas; the VDI model was

also shown to be effective.
However, when a comprehensive analysis was performed

using a combination of on-site investigation, simulation analysis

and remote sensing mapping, it was evident that the VDI model
was more suitable for monitoring early harvest crops. The early
harvest crop areas showed a different trend in cover changes to

those of forests and grasslands, and cities and towns during the
harvest period. When the growth curve trend changes, the VDI
model should be adjusted according to crop type. With the BSI
model, it was also difficult to differentiate burned areas of

mature crops from burned areas of stubble because of the
complexity of the soil spectrum in of burned stubble areas.
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