
Mesoscale spatiotemporal predictive models of daily
human- and lightning-caused wildland fire occurrence
in British Columbia

KhurramNadeemA,*, S.W. TaylorB,E,*,DouglasG.WoolfordC andC. B.DeanD

AUniversity of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada.
BPacific Forestry Centre, Natural Resources Canada, 506 West Burnside Road, Victoria,

BC V8Z 1M5, Canada.
CUniversity of Western Ontario,1151 Richmond Street, London, ON N6A 3K7, Canada.
DUniversity of Waterloo, 200 University Avenue W, Waterloo, ON N2L 3G1, Canada.
ECorresponding author. Email: steve.taylor@canada.ca

Abstract. We developed threemodels of daily human- and lightning-caused fire occurrence to support fire management
preparedness and detection planning in the province of British Columbia, Canada, using a lasso-logistic framework. Novel
aspects of our work involve (1) using an ensemble of models that were created using 500 datasets balanced (through

response-selective sampling) to have equal numbers of fire and non-fire observations; (2) the use of a new ranking
algorithm to address the difficulty in interpreting variable importance inmodels with a large number of covariates.We also
introduce the use of cause-specific average spatial daily fire occurrence, termed baseline risk, as a covariate for missing or

poorly estimated factors that influence human and lightning fire occurrence. All three models have strong predictive
ability, with areas under the Receiver Operator Characteristic curve exceeding 0.9.
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Introduction

The high interannual variation in lightning-caused fires in

western North America due to intense lightning storms in some
years is well known (Show and Kotok 1923; Melrose and
Holmgren 1932). In the Province of British Columbia (BC),

Canada, considerable variation in both the number of daily
lightning-caused (mean 30, range 0–400) and human-caused
(mean 10, range 0–30) wildfires and their spatial distribution is
due to complex interactions between the occurrence of cloud-to-

ground lightning strikes and a variety of human activities with
synoptic-scale influences of atmospheric circulation, mesoscale
influences of complex topography, andmicroscale influences of

diverse vegetation types on fuel flammability. Strong spatial
structure in the location of human-caused fires in BC is asso-
ciated with settlement and development patterns (e.g. roads,

railways, recreation and industrial activity), which are con-
strained by rugged topography (Camp and Krawchuk 2017).
Seasonal trends in human-caused fires are also influenced by
seasonal variation in vegetation phenology and human activity,

as well as fuel flammability.
In order to effectively plan the types, amount, positioning

and readiness of resources that may be needed to respond to fires

expected in the upcoming days, fire managers need a spatially
explicit estimate of the daily fire load. Substantial variation in

the number of new fires that occur each day or over a few days,
and especially surges in lightning-caused fire starts, has long
been recognised as a major fire management planning challenge

(Hornby 1936) and has motivated work on fire danger rating.
Early work on fire prediction examined the relationship between
fire occurrence and individual meteorological variables such as
relative humidity on seasonal (Saari 1923) and daily bases

(Noble 1926). Subsequently, fire danger indices that were
developed to incorporate the cumulative effects of multiple
meteorological variables (e.g. temperature, precipitation, rela-

tive humidity) into indicators of fuel flammability and fire
behaviour (Taylor and Alexander 2006; Hardy and Hardy
2007) enabled analysis of the empirical frequency of fire

occurrence by fire danger class (Beall 1934), or the expected
occurrence of one or more fires by danger class by administra-
tive region (Crosby 1954).

Fire occurrence patterns are inherently random. Conse-

quently, stochastic and statistical models that incorporate ran-
dom variables into their structure are natural frameworks for
modelling wildland fire occurrence. A very early stochastic
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framework for predicting fire occurrences was the negative
binomial model for new fire counts as a function of a fire danger
index (Bruce 1963). Later, Cunningham and Martell (1973)

used a Poisson model to relate counts of fires to the Fine Fuel
Moisture Code (FFMC), a component of the Canadian Forest
Fire Weather Index (FWI) System (see Van Wagner 1987; or

Wotton 2009). In the following 45 years, statistical modelling
evolved along with increasing data availability. Remote auto-
mated fire weather stations developed in the 1980s have gener-

ated 30 years of weather observations frommanymore locations
than are represented in national meteorological networks.
Advances in numerical weather modelling have also facilitated
development of gridded reanalysis datasets. Lightning location

detectors developed in the 1980s (Noggle et al. 1976 have
produced decades of strike location data (Gilbert and Zala
1987), while an increasing volume of data on vegetation

properties including seasonal greenness has been accrued from
satellite-borne sensors.

With higher resolution of fire-weather data has come more

sophisticated modelling methods. Taylor et al. (2013) described
a well-established methodology as introduced in the seminal
work of Brillinger et al. (2003), namely, a discretised approach

to modelling fire occurrence with multiple covariates where the
underlying fire occurrence process is assumed to be a spatio-
temporal point process with an inhomogeneous conditional
intensity function that depends on a variety of predictors; these

may include local weather and fuel moisture conditions as well
as other key variables such as local land-cover and a land-use
characteristics. Typically, logistic generalised additive models

are used in this framework where non-linear relationships
between the log-odds of fire occurrence risk and predictors are
modelled using spline-based smoothers. Representative exam-

ples of this modelling technique include Brillinger et al. (2003),
Vilar et al. (2010) and Woolford et al. (2010). For further
technical details and references, see the reviews in Taylor
et al. (2013) and Xi et al. (2019).

Despite these advances, several challenges remain. These
include: (1) the collection, fusion and alignment of various
sources of meteorological, geographic and demographic data of

different source resolutions that are required to assemble daily
values of candidate covariates over several fire seasons on a fine
spatial grid (often in the order of 1–400 km2), generating large

datasets; (2) responses may be non-linear with complex inter-
actions between variables; (3) discretisation of the spatial
domain into finer scales leads to large class imbalance between

fire and non-fire events whereby fire occurrence becomes an
uncommon if not rare-event problem; (4) it is difficult to
measure the intensity of human activity that could result in a
fire at fine spatiotemporal scales; and (5) although many

lightning-caused fire occurrence models and over 200 person-
caused fire models have been developed in the past 45 years
(Costafreda-Aumedes et al. 2017), relatively few models are

implemented operationally by fire management organisations.
In Canada, surface weather observations from ,2000

weather stations, as well as lightning strike locations, are

incorporated in the Canadian Wildland Information System
(CWFIS, Lee et al. 2002) at a national scale and in provincial
and territorial fire management agency information systems

in near-real time. Surface and atmospheric forecast data up to
14 days are also incorporated in CWFIS from the North Ameri-
can Ensemble Forecast System (NAEFS, Toth et al. 2005).

These systems provide a good framework for implementing fire
occurrence models.

Objectives

The objectives of our research are to: (i) describe the methods
and procedures involved in assembling a large database for
spatiotemporal modelling of fire occurrence; (ii) develop a

modelling framework to determine key driving factors of
human- and lightning-caused fires; and (iii) develop three
models of daily lightning- and human-caused fires that can be
readily implemented within fire management information

systems for different management applications:

� An Observed Lightning-Caused Fire (OLCF) model that can

be used to nowcast1 fires that have occurred (but may or may
not have yet been reported) informed in part by recent
lightning strike and weather observations;

� A Predicted Lightning-Caused Fire (PLCF) model to forecast
lightning fires, informed in part by weather and atmospheric
stability measures that can be calculated from medium-term

numerical weather model forecasts;
� A Human-Caused Fire (HCF) model to that can be used to

nowcast and forecast human-caused fires informed by

observed or forecast surface weather conditions.

Earlier work on daily fire prediction models for BC by

Magnussen and Taylor (2012) utilised data from 1970 to
2000. Here, we introduce several novel analytical procedures
and statistical modelling methods. In the Variable selection and
data compilation subsection, we introduce human- and

lightning-caused fire baseline risk covariates based on ranking
of the average number of historical fires per grid cell in the
available incident database since 1981. The baseline risk was

employed to account for spatial variation in fire occurrence that
is not well explained by specific geographic variables, e.g. forest
cover, road density. It is analogous to the incidence of disease in

a population in epidemiology (e.g. Wang et al. 2009) that
anchors the event risk. This quantity was termed persistence
probability by Preisler and Westerling (2007), who used it to

illustrate anomalies. We also use a measure of vegetation
greenness (Normalized Difference Vegetation Index, NDVI)
derived from remote sensing to explain seasonal variation in fire
occurrence not fully accounted for by daily weather and fire

danger measures, and use several atmospheric stability indices
derived from a reanalysis dataset as indicators of lightning strike
potential. In the Response-based sampling subsection, we

address the class imbalance problem (.99% of voxels have
no fire) by using sampling to create balanced datasets with the
same number of fire and no-fire observations, and in the

1Two separate lightning-caused firemodels are needed for nowcast and forecast applicationsWe define nowcast as a prediction of the probability that a firewas

ignited at a location in the recent past, which may or may not have yet been reported, using a model that includes observed weather and lightning strikes. Such

models can be used to guide detection efforts following a lightning storm.
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Variable ranking subsection, we introduce ensemblemethods to

rank variable importance. A list of abbreviations used in the
paper is in the Supplementarymaterial available on the journal’s
website.

Materials and methods

In this section, we describe six phases in our model develop-
ment: variable selection and data compilation, model selection,
response-based sampling, model fitting, model evaluation and
variable ranking. Prior to doing so, we first briefly review the

influences of weather, topography, vegetation and ignition
sources on fuel flammability and fire occurrence in BC, which
informed variable selection.

Fire environment of the study area

The model domain is the Canadian province of British
Columbia, which has a land area of 945 000 km2 falling between

488 and 608N latitude. Approximately 70% of the land area is
dominated by coniferous forest or grassland and is potentially
flammable (Fig. 1a).

The moisture content and flammability of forest fuels in BC
is strongly affected by the position of the mid-latitude storm
track that delivers moisture-laden Pacific air to western North

America, which is closely connected to the strength and position
of alternating low and high stratospheric pressure features
(Moore et al. 2010). The Aleutian Low (AL) centred in the Gulf
of Alaska is the dominant synoptic feature in winter (Stahl et al.

2006). The North Pacific High (NPH) is the dominant synoptic

feature in during the April–October fire season, moving north
and increasing in intensity and persistence in summer. The NPH
blocks the flow of moisture-laden air, resulting in warm tem-
peratures and rain-free periods of several days to many weeks in

duration (especially in July and August), and a trend to increas-
ing drying of deep organic layers over the fire season. The
blocking effect is strongest in southern BC, but can extend over

the province. Although the AL moves north and weakens in
summer, weak low-pressure systems connected to the AL
intrude periodically and may bring frontal precipitation over

widespread areas during the fire season. The North American
Cordillera that runs through the province from north to south
further influences mesoscale variation in weather and climate.

The various mountain ranges comprising the Cordillera inter-
rupt thewest-to-east zonal flow and restrict thewestward flow of
continental and Arctic air masses from central and northern
Canada, resulting in rain shadow effects on the east side of the

mountain ranges, and a strong west–east gradient in increasing
temperature, and decreasing precipitation (Moore et al. 2010).
However, greater atmospheric instability east of the Coast

Mountains results in periodic local convective storms with
precipitation in summer months (Jackson 1968).

A variety of ecosystems ranging from temperate rainforests

to semideserts and grasslands, boreal forests and alpine tundra
have developed in BC, varying with proximity to the Pacific
Ocean, topography and latitude (Meyn et al. 2010). These
ecosystems have different structural features, such as canopy
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Fig. 1. (a) Coniferous forest cover in the study area (green shading) and location within Canada (inset). (b) Ecoregions in the study

area and locations of stations used in compiling the historic weather dataset.
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closure, that influence fuel wetting and drying rates, and differ-
ent surface fuel properties such as organic layer depth, that affect

moisture-holding capacity. Five broad ecozones are recognised:
Pacific Maritime, Montane Cordillera, Boreal Cordillera,
Boreal Plains and Taiga Plains (Fig. 1b).

Lightning may be produced both by the passage of upper low

troughs and convective storms (Alexander 1927). Individual
events comprising thousands of strikes have a strong spatial
structure associated with storm tracks. Lightning strike density

increases approximately along the west–east gradient in con-
tinentality (Burrows et al. 2002).

Human activity in BC’s forests (represented by population
and road density) generally decreases along a south–north
gradient, and is concentrated in valley bottoms.

Variable selection and data compilation

Our models represent the average concurrent relationship
between a set of explanatory variables (represented by the data

Table 1. Covariates used in the daily fire occurrence prediction models

WUI, wildland–urban interface; WII, wildland–industrial interface; NDVI, Normalized Differential Vegetation Index

Variable Definition Variable Definition

Baseline risk Surface fire weather

LIGHTNING RISK RANK Ranked lightning fire occurrence rate TEMPERATURE Temperature at noon

LOGIT HUMAN RISK Logistic transform of human fire risk occurrence rate RELATIVE HUMIDITY Relative humidity at noon

LOGIT HUMAN RISK2 Square of LOGIT HUMAN RISK WIND SPEED 10-min avg wind speed at noon

Geographic PRECIPITATION 24-h precipitation at noon

LATITUDE Latitude of cell midpoint FFMC Fine Fuel Moisture Code

LONGITUDE Longitude of cell midpoint DMC Duff Moisture Code

ELEVATION Mean cell elevation SDMC Sheltered Duff Moisture Code

ROUGHNESS Standard deviation of elevation DC Drought Code

ELEVATION2 Square of ELEVATION ISI Initial Spread Index

BOREAL CORDILLERA Ecoregion of cell (0,1) BUI Build-up Index

BOREAL PLAIN Ecoregion of cell (0,1) FWI Fire Weather Index

PACFIC MARITIME Ecoregion of cell (0,1) DSR Daily Severity Rating

TAIGA PLAIN Ecoregion of cell (0,1) PSUF Probability of sustained flaming ignition

MONTANECORDILLERA Ecoregion of cell (0,1) TEMP2 Square of temperature

Time periods DMC2 Square of DMC

CHANGE POINT 1 if year .1992, else 0 DC2 Square of DC

WEEKDAYX 1 if weekday¼X, else 0 ISI2 Square of ISI

Vegetation FWI2 Square of FWI

VEGETATED Vegetated proportion PRECIPITATION LAG1 Precipitation at day t–1

TREED Treed proportion PRECIPITATION LAG2 Precipitation at day t–2

CONIFER COVER Proportion of conifer species PRECIPITATION LAG3 Precipitation at day t–3

DECIDUOUS COVER Proportion of deciduous species ACCUMPRECIPITATION Precipitation in days (tyt–3)

%CONIFER Percentage of treed area conifer FFMC�TEMPERATURE FFMC� temperature

%DECIDUOUS Percentage of treed area deciduous DMC�TEMPERATURE DMC� temperature

%MIXEDWOOD Percentage of treed area mixed wood DC�TEMPERATURE DC� temperature

AVERAGE NDVI Mean NDVI value per day-cell ISI�TEMPERATURE ISI� temperature

%CONIFER2 Square of % CONIFER BUI�TEMPERATURE BUI �temperature

%DECIDUOUS2 Square of % DECIDUOUS FWI�TEMPERATURE FWI� temperature

AVERAGE NDVI2 Square of AVERAGE NDVI DC..ACCUM PRECIP DC/(1þACCUM PRECIPITATION)

Ecumene DMC..ACCUM PRECIP DMC/(1þACCUM PRECIPITATION

ROAD LENGTH Sum of road segment lengths FFMC..ACCUM PRECIP FFMC/(1þACCUM PRECIPITATION)

POPULATION Population density ISI..ACCUM PRECIP ISI/(1þACCUM PRECIPATION)

WUI AREA WUI area within each cell BUI..ACCUM PRECIP BUI/(1þACCUM PRECIPITATION)

WII AREA WII area within each cell FWI..ACCUM PRECIP FWI/(1þACCUM PRECIPITATION)

WUI DISTANCE Distance to nearest WUI polygon Atmospheric stability

WII DISTANCE Distance to nearest WII polygon 500 MB ANOMALY 500mb (hPa) geopotential height anomaly

ROAD LENGTH0.5 Square root of ROAD LENGTH 500 MB TENDENCY 500 mb geopotential ht day t – (t – 1)

POPULATION0.5 Square root of POPULATION K INDEX K Index

Lightning TOTALS INDEX Totals Index

LIGHTNING STRIKES Cloud-to-ground lightning strikes

counted in the previous 24-h

SHOWALTER INDEX Showalter Index

LIGHTNING LAG1 Lightning strikes in day t–1 C-HAINES INDEX Continuous Haines Index

LIGHTNING LAG2 Lightning strikes in day t–2

ACCUM LIGHTNING Lightning strikes in days (tyt–3)

LIGHTNING INDICATOR 1 if ACCUM LIGHTNING.0, else 0

14 Int. J. Wildland Fire K. Nadeem et al.



matrix X ) and Bernoulli fire occurrence (represented by the

response vector Y ). The sampling unit is a space-time voxel
that represents a 24-h time period (starting at midnight) for a
20 � 20-km cell in the National Forest Inventory (NFI) grid
(Gillis et al. 2005). The grid comprises 2 541 400-km2 spatial

units in BC. The spatial resolution was chosen as a compromise
between a desire for high spatial resolution and issues with
weather data accuracy and increasing rarity of fire occurrences at

fine scales. The temporal domain of the models was restricted to
the fire season, a 7-month period from 16 March to 14 October,
which captures more than 99% of fires that occurred in BC.

Based on observation and understanding of weather and fire
dynamics in BC, experience from related modelling work and
preliminary analyses, we considered 72 and 83 of the variables

listed in Table 1 as candidate explanatory variables for the
lightning- and human-caused models respectively. They
include spatially varying but temporally static baseline, geo-
graphic, vegetation and ecumene variables, and spatiotempo-

rally varying lightning strike and meteorological variables,
which along with fire occurrence records, are a mixture of
point, interval and continuous data in their raw form. All

explanatory variables were binned by day and cell or interpo-
lated to the centroid of each 20� 20-km grid cell, as described
in the following sections. All daily values are assumed to

represent a 24-h period (0000–2400 hours). As many as
18 million voxels were created for each variable (2541
cells � 34 years � 214 days) in the data compilation phase.
The compilation and management of these the primary and

gridded covariate datasets, although time-consuming, is a

necessary task. Note that M random subsets of voxels from
this large and complex spatiotemporal data structure were used
for model fitting, as described in the Response-based sampling
section to follow.

Fire response and baseline occurrence risk

Records of characteristics (start date, cause, latitude,

longitude) of ,70 000 individual fires were obtained from the
BCWildfire Service for the 1980–2014 period, and thenmapped
to our space–time voxels. At the spatial resolution of our

analysis, most of counts of fires are reduced to either 0s or 1s,
which represent non-fire and fire events respectively. This
discretised approach permits the use of logistic modelling

methods to estimate fire occurrence probability.
The baseline risk of lightning-caused and human-caused fire

occurrence was estimated as the observed average daily count of
fire occurrences in a cell determined using the locations of

individual georeferenced fires. These rates are point estimates
of long-term expectations of the response variable over the
spatial grid (Fig. 2) and enter into the models as transformed

covariates (lightning risk rank and logit human risk in Table 1a).

Geographic

Ten variables that may contribute to fixed topographical or
ecoloclimate effects were evaluated. The ecozones of Canada
(Wiken 1986) were used to regionalise the models; cell values
were obtained by rasterising a polygon-basedmap (Fig. 1b). Cells

High : 0.026

(a) (b)

Low : 0

High : 0.015

Low : 0

Fig. 2. (a) Baseline lightning-caused fire ignition rate (fires day�1 400 km�2); (b) baseline person-caused fire ignition

rate (fires day�1 400 km�2). No fires were detected in the white cells during the period 1985–2014. The aggregate

background rate for all British Columbiawas,1700 fires per year or 4.1 and 3.8 person- and lightning-caused fires per day

respectively during 10 March–15 October.
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in the same ecozone are assumed to have similar ecological
characteristics. Digital elevation data over Canada were obtained
at 7.3 arc s (225-m) grid resolution from the GMTED2010 –

Global MultiResolution Terrain Elevation Dataset distributed
by the US Geological Survey (http://earthexplorer.usgs.gov/,
accessed 12 November 2019) and upscaled to a mean and

standard deviation for the 20-km cells, where standard deviation
of the elevation is an index of topographic roughness.

Vegetation

Fifteen measures of vegetation cover were obtained from a

national forest inventory dataset developed by Beaudoin et al.

(2014) by imputing various vegetation properties obtained from
aerial photo and ground plots to a 250-m Moderate Resolution

Imaging Spectroradiometer (MODIS)-based grid using k-nearest
neighbour procedures. We determined the mean and standard
deviation of the proportion of vegetated and non-vegetated area;
the proportion of treed and non-treed area; and the proportion of

coniferous and deciduous tree species by upscaling the 250-m
grid to our 20-kmgrid. In addition,we estimated the proportion of
the treed area in each 20-km cell that was conifer, deciduous or

mixed-wood classes (.75, 26–75, and ,25% needled leaf
proportion respectively) as the empirical proportion of the
number of 250-m cells in each needle-leafed class and the number

of treed 250-m cells in a 20-km cell.
The timing and intensity of spring leaf flush and fall (autumn)

senescence vary geographically and interannually and influence
surface fuel flammability in temperate and boreal forests but are

not represented in the current Canadian Forest Fire Danger
Rating System. After the snow melts in spring, there may be a
period of several weeks before understorey vegetation flushes

when there is an accumulation of flammable dead vegetation on
the ground surface, and in deciduous and mixed-wood forests, a
period when there is greater insolation and wind penetration

within forest stands before trees leaf out. Leaf flush typically
occurs over a period of weeks, with leaf cover reaching a plateau
in late spring to early summer, remaining fairly constant for the

growing season before senescence begins again in fall. The
NDVI is a transformation of satellite-based spectral reflectance
measurements acquired in the visible (red) and near-infrared
regions, which vary with vegetation cover. We obtained histori-

cal daily NDVI data acquired by the AVHRR satellite from the
NOAANational Climatic Data Centre (Vermote et al. 2014) for
the BC domain from 1981 to 2015. The native data at 250-m

resolution were upscaled to 20 km. We then estimated mean
NDVI values for each cell and day-of-year combination by
fitting spline curves to the time series of averaged daily NDVI

values. The resulting covariate, mean NDVI, serves as an
average phenological index for a grid cell.

Ecumene

The potential for human-caused fire ignitions (that may
result in a fire report) within the ecumene or inhabited portion
of BC is difficult to assess directly: eight proxy measures were

evaluated in addition to baseline risk. The total length of roads
(km) in each cell, obtained from a national road database
(Statistics Canada 2015), was used as a proxy for accessibility.
Population counts were also obtained for census dissemination

block polygons (the smallest spatial unit for which population
data are available) in the 2011 census (Statistics Canada 2012)
and an areal interpolation algorithm (districting) was used to

estimate the population in a grid cell (de Smith et al. 2015).
Furthermore, the proportion of a cell composed of, or the
distance from the midpoint to a wildland–urban interface

(WUI) or wildland–industrial interface (WII) features was
also included (Johnston and Flannigan 2018). Days of the
week were also included as a binary categorical variable (e.g.

MONDAY ¼ 0, 1).

Lightning strikes

We obtained data on individual lightning strike locations and
strike times from the Canadian Lightning Detection Network

(CLDN) for 1998–2015 (Dockendorff and Spring 2005) and
binned the number of strikes per day, and lagged counts for 1 and
2 days and accumulated counts for 3 days for each cell.

Surface weather and fire danger indices

Thirty-two measures of surface weather, fuel moisture, and
fire danger and transforms were evaluated. Historical daily

observations of temperature, relative humidity, wind speed
and 24-h precipitation at 1200 hours were obtained for Meteo-
rological Service of Canada (MSC) and provincial and territorial
fire management agency stations (including BC) in Canada as

well as for NationalWeather Service (NWS) and US fire agency
remote automated weather stations (RAWS) stations in the
adjacent US states within 60 km of the border for the 1980–

2014 period (Fig. 1b). The MSC and NWS stations have
continuous daily observations, whereas many of the provincial
and territorial and US RAWS stations are only operational

during the fire season. Daily observations of these variables
were also obtained from the North American Regional Reanal-
ysis (NARR) dataset (Mesinger et al. 2006) at 0.38 resolution
(,32 km grid) and interpolated to the 20-km grid using thin

plate spline (TPS) regression technique as implemented in the
R package fields (Nychka et al. 2017). Station-based weather
variables were also interpolated to the 20-km grid using TPS

with correspondingNARR-based interpolant serving as a covar-
iate, and elevation as an additional covariate for temperature.
The NARR data provide information on spatial variation in

these variables at a daily scale related to synoptic-scale weather
patterns, modifying the influence of distance and elevation.
Cross-validation analysis revealed that including NARR data

improved interpolation, especially in areas of low station
density, and reduced border effects.

Although there is an operationally defined fire season
across the province of BC, a given location (e.g. a grid cell)

is not at risk of fire occurrence until certain conditions occur.
Fire season start dates are not stationary and were calculated
for each cell for each year using two rules, depending on the

amount of tree cover per cell. For open cells (tree cover
,75%), the fire season start day was the last of day of the
series of 5 consecutive days .98C (Simard and Valenzuela

1972) after 10 March. For densely forested cells (tree cover
.75%) where snow persists longer, the fire season start day
was the last of day of the series of 5 consecutive days.10.58C
after March 10th. Fire season end dates were calculated as the

16 Int. J. Wildland Fire K. Nadeem et al.
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date when noon temperature ,58C for 3 consecutive days
(Wotton and Flannigan 1993). Overwinter precipitation was
calculated from the fire season end date to start date of

successive years. The six values Fine Fuel Moisture Code,
Duff Moisture Code, Drought Code, Initial Spread Index,
Buildup Index and Fire Weather Index (FFMC, DMC, DC,

ISI, BUI, FWI, respectively) of the FWI System and the
sheltered duff moisture code, SDMC (Wotton et al. 2005),
were calculated for the fire season days via theR package cffdrs

(Wang et al. 2017) using standard values to initialise the
calculations at the beginning of the fire season, with modifica-
tion of the DC value according to the over-winter precipitation
(Lawson and Armitage 2008. FWI System values outside the

fire season dates are recorded as NA (not applicable).

Atmospheric stability

Six atmospheric stability indices were calculated from for-
mulae constructed to reflect the potential for convection within
an air mass from temperature and humidity measures at certain

fixed critical levels in the atmosphere. The K, Showalter and
Totals Indices, indicators of lightning storm development, were
calculated following Stull (2015). The continuousHaines Index,

a measure of potential for ‘blow-up’ fire conditions, was
calculated after Mills and McCaw (2010). Daily temperature
and dew point temperature estimates at 850, 750 and 500 hPa

(mb) needed to calculate these four indices were obtained from
the National Centre for Environmental Prediction (NCEP)
reanalysis dataset (Kalnay et al. 1996) on a 2.58 � 2.58 grid
(approx. 200 � 200 km) and re-interpolated to our 20-km grid.
NCEP 500-mb geopotential height data were also used to
calculate the daily 500-mb geopotential height anomaly as the
difference from the average height of the 500-mb pressure level

on each day in each cell, and the 500-mb height tendency as the
difference between sequential days. Negative 500-mb anoma-
lies and tendencies associated with frontal passage have been

associatedwith lightning ignitions and extreme fire behaviour in
Alberta (Nimchuk 1983; Janz and Nimchuk 1985).

Model selection: the lasso-logistic model

Binary response outcomes of fire occurrence on a given day–cell
combination, (Y) such as zero (Y¼ 0) or at least one (Y¼ 1) can

be modelled using the ordinary logistic regression (OLR) model
with the joint likelihood function for n observations given as:

L ¼ Q
npy 1� pð Þ1�y

, where y is the observed fire occurrence

and pð Þ ¼ log p
1�p

� � ¼ btx, where b is the vector of regression

coefficients x including the intercept, x¼ 1; xð Þt; and t denotes

vector transpose. The resulting log-likelihood function can be
expressed as follows:

l bð Þ ¼ �
Xn

i¼1
1� yið Þbtxi þ ln 1þ exp �btxið Þð Þ½ �: ð1Þ

Here, we model fire occurrences using the lasso-logistic
regression model (Tibshirani 1996), which is a regularised
version of OLRwith an L1-penalty imposed on the coefficients

vector b ¼ b1; b1; . . . ; bp
� �t

, i.e. we now maximise Eqn 1

subject to the constraint C that
PP

k¼1 bkj j � C; C > 0 (k is an

index of bk). This leads to the following penalised form of
Eqn 1:

l1 bð Þ ¼ �
Xn

i¼1
1� yið Þbtxi þ ln 1þ exp �btxið Þð Þ½ �

� l
XP

k¼1
bkj j;

ð2Þ

where l $ 0 is the Lagrangian of the optimisation problem in

Eqn 2. This form of the penalised likelihood function can also be
derived under a double-exponential (Laplacian) prior distribu-
tion on b in a hierarchical Bayesian formulation of OLR (Lee

et al. 2006). The tuning parameter l can be estimated using
various methods including generalised and k-fold cross-
validation (Tibshirani 1996). We employ the latter approach
in fitting lasso-logistic model to BC data using the R package

glmnet (Friedman et al. 2010).
We fit three separate lasso-logistic models regressionmodels

that have different ignition indicators for different management

applications (see Objectives subsection): (i) an OLCF model of
lightning-caused fire occurrence that includes observed light-
ning strikes; (ii) a PLCF model of lightning-caused fire occur-

rence that excludes lightning strike covariates but includes
atmospheric stability indices; and (iii) an HCF model including
indicators of human activity. Lists of covariates associated with

these models are reported in Supplementary Tables S1–S3.

Response-based sampling

Wildland fire occurrences are exceedingly rare at fine space–
time resolutions. We have,18 million 20 km� 20 km� 1 day
space–time voxels spanning 34 fire seasons (1981–2014);

lightning and human-caused fire occurrences (Y ¼ 1) were
recorded in only 0.23 and 0.18% of these voxels respectively. In
order to resolve the resulting class-imbalance (see, for an

overview, Haixiang et al. 2017) in response and the computa-
tional intractability of fitting models to prohibitively large
datasets, we employed a response-based downsampling scheme

for controls (Y ¼ 0), where all case observations are retained
togetherwith a simple random sample drawn from controls. This
sampling procedure is akin to epidemiological case-control

studies where subjects are selected based on their disease sta-
tus, whereas their exposure history (covariate values) is deter-
mined retrospectively. We used a balanced sample, where we
retained all fire occurrences and selected a simple random

sample of the same size from the controls; this procedure was
repeated to create 500 balanced samples. Doing so induces a
deterministic offset intercept term into the logistic modelling

framework, log(p1/p0), in the linear predictor g(.) i.e. (for details,
see section 6.3 of Hosmer and Lemeshow 2000:

g p�i
� � ¼ log p1=p0ð Þ þ btxi:

where p�i ¼ P Yi ¼ 1 xi; si ¼ 1jð Þ, si is selection status (0 or 1) of
the ith voxel; p1 and p0 are selection probabilities of cases and
controls respectively, which can be determined from respective

sampling proportions. For our balanced sampling design, p1¼ 1
and p0 is the ratio of the number of controls to the number of
cases in the entire dataset. We refer the reader toWoolford et al.

(2011) for a detailed discussion on this topic in the context of
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forest fire occurrence prediction and its connection to case-

control studies. We also comment further on the use of balanced
samples in the Discussion.

Model fitting

We define two types of fire occurrence counts, temporal and
spatial, as follows:

N
Hð Þ

G;j (temporal counts): total observed human-caused fires

over allG grid cells on the jth day; andN
Hð Þ

i;S (spatial counts): total

observed human-caused fires over a given set of S days in cell i.

Here, the response variable Y
Hð Þ

i;j is independently distributed

over day–cell combinations, so that counts of occurrences can be

predicted as (see Preisler et al. 2009 for a similar example):

N̂
Hð Þ

G; j ¼
X

i2G; j p̂
Hð Þ
i; j and N̂

Hð Þ
i;S ¼

X
i; j2S p̂

H
i; j;

where p̂ Hð Þ
i; j is the probability of at least one human-caused fire

occurring in voxel (i, j). Similarly, we denote various spatial and
temporal count predictors for the two lightning-caused models as

N̂
L�PLCFð Þ

G; j , N̂
L�OLCFð Þ

G; j , N̂
L�PLCFð Þ

i;S and N̂
L�OLCFð Þ

i;S .

We fit an ensemble of 500 individual OLCF, PLCF and HCF
models to the corresponding samples to predict day–cell fire

occurrence probabilities over grid voxels; then, we determine
the average value of the covariate coefficients over all 500
model fits (in our application, each individual model in the

ensemble has the same form and covariates). We opted for a
large number of datasets in our ensemble (M ¼ 500) because:
(i) generally, more stable variable rankings are achieved with

increasing values of M, and (ii) it allows sufficient coefficient
variability in individual fits by exploring the samples space
associated with P(X |Y) ¼ 0), thereby improving the predictive

skill of the ensemble mean. The ensemble probabilities are

computed as follows: p̂ ¼ g�1
PM

j¼1 gj :ð Þ=M
� �

, where gj(.)

denotes the estimated logistic link function for the jth model
fit. We evaluate predictive skill of the three models (OLCF,

PLCF, HCF) based on these ensemble probabilities.

Model evaluation

We split the 34 years of the study dataset (1981–2014; without
lightning strikes) into training (1981–2008) and a future test
datasets (2009–14) for both HCF and PLCF models. This

leaves ,83 and 89% of the total lightning- and human-caused
fire occurrence observations respectively for model training
and the rest to evaluate predictive skill of the fitted models on
future fire seasons. We restrict the OLCF model dataset to

16 years (1999–2014) with consistent cloud-to-ground light-
ning strike data from the CLDN. We therefore train the OLCF
model on 14 years and reserve the 2009 and 2014 fire seasons

as test data to evaluate model performance. The 2009 fire
season registered an unusually high number of lightning-
caused fires over a short timespan (Fig. 3b), allowing a star-

ker comparison between the OLCF and PLCF models during
surges in fire occurrence.

We evaluate model performance in terms of Receiver
Operating Characteristic (ROC) curve analysis (Hosmer and

Lemeshow 2000) and root-mean-square prediction error
(Table 2), and by visualising prediction bias of count residuals
in temporal and spatial dimensions (Figs 3–5). Here, temporal

and spatial fire occurrence count residuals for the HCF model
are defined as follows:

Temporal residuals : RT
Hð Þ

G; j ¼ N
Hð Þ

G; j � N̂
Hð Þ

G; j

Spatial residuals : RS
Hð Þ
i;S1

¼ N
Hð Þ

i;Si
� N̂

Hð Þ
i;S1

;

whereN
Hð Þ

i;S1
denotes the number of observed human-caused fires

for days S1 in the i
th cell during the fire seasons in the test dataset

(2009–14). Similarly, count residuals for the lightning-caused

models are notated as RT
L�PLCFð Þ

G; j , RT
L�OLCFð Þ

G; j , RS
L�PLCFð Þ
i;S1

,

RS
L�OLCFð Þ
i;S2

and RS
L�PLCFð Þ
i;S2

; where S2 is the set of days during

the 2009 and 2014 fire seasons that comprise the test dataset for

the OLCF model. We also report relative root-mean-square
prediction error (RRMSPE) based on these residual counts,
computed as follows (Table 2):

RRMSPE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�1

Xm

k¼1
yk � ŷk

� �
=
�
yk þ 1

�h i2r
;
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Fig. 3. (a, b) Daily observed (grey line) and predicted (black line) fire

occurrence counts in the 2009 and 2014 test years in British Columbia in the

(a) Predicted Lightning-Caused Fire (PLCF), and (b) Observed Lightning-

Caused Fire (OLCF) models. (c) Monthly distribution of temporal residual

counts for the OLCF model computed over the 2009 and 2014 test years.
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where m is the number of predictions involved and yk is a fire
occurrence count.

We also compute prediction sensitivity and specificity
(Table 2), where the threshold for classifying fire occurrence
probabilities as 0 (no fires) or 1 (at least one fire) was based on

the Youden index criterion associated with the computed ROC
curves (Youden 1950; Hand 2012).

Variable ranking

In this study, we employ a novel covariate ranking algorithm
(summarised in Supplementary material) that exploits two key
features of our analysis methodology: (i) repeated sampling

from controls to create a large number of balanced datasets;
(ii) automatic variable selection performedby lasso-logisticwhen
fitted to a single balanced dataset. Consequently, our ranking

algorithm involves two major steps: (1) we independently fit

the lasso-logistic model to M ¼ 500 balanced datasets created

via case-control sampling. (2) We average the standardised

regression coefficients in the M model fits to derive rank
metrics for each of the P covariates in x. In order to determine a
reduced set of themost influential covariates, we further compute

an index pDropi – the proportion of times the ith covariate is

dropped from M lasso-logistic model fits – as follows:

pDropi ¼
PM

j¼1 Ibi; j¼0=M .

Results

We fitted three models: OLCF, PLCF and HCF for different fire
management applications, as described in the Objectives sub-
section. In this section, we contrast the predictive performance

and variable importance among the three models, and evaluate
the skill of the ensemble modelling approach.

Table 2. Receiver operating characteristic (ROC) analysis for predicting individual ignitions (area under curve, AUC, sensitivity and specificity)

and relative root-mean-square prediction error (RRMSPE) for predicting number of fire occurrence counts in the Observed Lightning-Caused Fire

(OLCF), Predicted Lightning-Caused Fire (PLCF) and Human-Caused Fire (HCF) fire models

Years in parentheses correspond to fire seasons in the test datasets

Model ROC analysis RRMSPE

AUC Sensitivity Specificity Temporal Spatial

OLCF (2009, 2014) 0.955 0.905 0.861 1.0487 0.5456

PLCF (2009, 2014) 0.924 0.905 0.790 2.1980 0.5859

PLCF (2009–14) 0.929 0.898 0.814 2.7537 0.6102

HCF (2009–14) 0.913 0.866 0.811 1.1001 0.7702
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Fig. 4. (a, b) Daily observed (grey line) and predicted (black line) fire occurrence counts across six test years (2009–14) in BC in the (a)

Human-Caused Fire (HCF), and (b) Predicted Lightning-Caused Fire (PLCF)models. (c, d)Monthly distribution of temporal residual counts

corresponding to models on the left computed over the 2009–14 test years.
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Predictive performance

We examined the predictive skill of themodels in regard to ROC

characteristics, provincial-scale time series, and temporal and
spatial residuals. The accuracy of all the models in predicting
individual fire occurrences for a given day–cell combination on

test data was very good (area under receiver-operator curve
(AUC). 0.9); AUC, sensitivity and specificity increased in the
order of HCF , PLCF , OLCF (Table 2). Sensitivity was
greater than specificity for all models; however, slight tomodest

overprediction of fire occurrences (and the cost of being
overprepared) is more desirable than underprediction in fire and
emergency management. The increase in skill due to having

information on ignition sources (e.g. lightning strike location
and timing) is evident from a large jump in specificity (fewer
false positives) from 0.790 and 0.811 for the PLCF and HCF

models, to 0.861 for the OLCF model. However, the specificity
under OLCF is still below 0.9, indicating that the model can
often predict a fire occurrence following lightning strikes that
failed to result in an actual reported fire.

In order to evaluate the performance of the models in

predicting daily fire occurrences for provincial-scale prepared-

ness planning, we compared the predicted (sum of the cell-based

probability values over all cells on a particular day) v. the

observed daily fire counts in the test years. Not surprisingly,

the OLCF model was better than the PLCF model in capturing

the peaks in daily fire occurrences in 2009 and 2014 that are due

to surges in lightning strikes over broad geographic scales. This

is also evident from the residual plot (of under- and

overpredictions) in Fig. 3b, and the RRMSPE values of 1.049

and 2.198 for the OLCF and PLCF models respectively

(Table 2). The daily observed v. PLCF-model-predicted fire

occurrences are shown again in Fig. 4b, but in contrast to the

HCF model (Fig. 4a), and for the 2009–14 fire seasons. Both of

these models track intraseasonal fluctuations in fire occurrence

quite well. The PLCF model indicates the occurrence of spikes

(approximately .40 fire occurrences per day) in lightning-

caused fires, but underestimates their magnitude in all years

but 2014 (Fig. 4b). Otherwise, temporal residual counts for the

PLCF model (Fig. 4-days) are generally unbiased, showing no

intraseasonal trend (RMSPE 2.7537; Table 2). The peaks in

daily human-caused fire occurrence are smaller (approximately

.10 fire occurrences per day) than for lightning fires in BC, and

are captured reasonably well by the HCF model (Fig. 4a),

although the temporal residuals (Fig. 4c) show some downward
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Fig. 5. (a–c) Observed v. predicted spatial ignition counts for 2541 grid cells computed over the test years. (a) Human-Caused Fire (HCF),

and (b) Predicted Lightning-Caused Fire (PLCF) models with counts computed over 2009–14 test years; and (c) Observed Lightning-Caused

Fire (OLCF) model with counts computed over 2009 and 2014. (d–f) Distribution of spatial observed v. predicted fire occurrence count

residuals grouped by ecozone (see Fig. 1b) corresponding to the models and years on the left.
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bias (overprediction) starting from June onwards (RMSPE
1.1001; Table 2). This is mainly driven by the model’s false
positive rate (Table 2, specificity), which often leads to predict-

ing one or more human-caused fires on days when none occur.
Notice, however, that this downward bias is not present in
residuals computed for the training dataset (1981–2008;

Fig. S1).
The distribution of spatial residuals (from counts of pre-

dicted and observed fires in a single grid cell over correspond-
ing test years) is generally unbiased for all models across

ecozones, with most residuals tightly concentrated around zero
(Fig. 5d–f), although there is a greater range of residuals in the
Montane Cordillera ecozone where most fires occur. Spatial

RMSPE scores increase (accuracy decreases) in the series

0.546, 0.586, 0.7702 for the OLCF, PLCF and HCF models
respectively (Table 2), indicating that it is more challenging to
predict where human-caused fires may occur. Spatial residuals

in the PLCF model are biased downwards (overprediction) for
grid cells that accumulate a higher number of fires over multiple
seasons. (Fig. 5b), possibly owing to the influence of the baseline

lightning risk covariate. Fig. 6 provides an example of predicted
v. observed values for 4 days in the test dataset.

Ensemble performance

We evaluated the ensemble modelling approach in two ways.
First, we computed the distribution of AUC values over the 500
individual model fits. Although the AUC values for the

ensemble models (Table 2) were approximately one standard
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Fig. 6. Predicted probability of a fire occurring within a 400-km2 cell and locations of observed fires (�) on
4 days in the test dataset. (a) Lightning-caused fires on 27 July 2009: predicted 49.3, observed 39; (b) lightning-

caused fires on 1 August 2009: predicted 84.4, observed 84. (c) Person-caused fires on 10 August 2009:

predicted 3.8, observed 2; (d) person-caused fires on 3 August 2009: predicted 7.4, observed 10.
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deviation higher than the average of 500 value, we view this as

an advantage over using a single model. Second, we fitted three
additional OLCF, PLCF and HCLF models using OLR
(Tables S6–S7) where: (i) only the basic covariates in each

modelwere included, i.e. excluding the baseline risk and derived
covariates; (ii) a stepwise regression algorithm was employed
for model selection; and (iii) models were fitted to a single
balanced dataset in each case. The AUC value from OLR was

lower:,4.5% for the HCF and PLCF models, and 4.7% for the
OLCF model, clearly showing that our framework has greater
predictive skill than a less involved benchmark approach.

Variable selection and importance

The variable rank score (Supplementary Material 2, Eqn S3),
average standardised regression coefficient �b

D
i and pDrop index

for all of the variables that were included in the OLCF, PLCF
and HCF models are given in Supplementary Material 3,
Tables S1–S3 in rank order. It should be noted that the average

non-standardised coefficients, �bDi , (not reported here) are
implemented in model prediction applications. Fig. 7 shows that
rank score, Rank(X), and pDrop have negative relationships, with
a large jump in the latter at threshold of ,0.2, forming two

distinct clusters of covariates. We consider that all covariates in
the cluster below 0.2 are the most important predictors in their
respective models. We emphasise that pDrop and importance

ranks reveal different aspects of how a covariate influences the
predictive skill of the ensemble model. Specifically, rank
describes a covariate’s influence relative to all other covariates,

whereas pDrop measures how often that covariate is selected

(or rejected) in the model. For example, in the PLCF model
(Table S2), probability of sustained flaming (PSUF) and
ELEVATION2 have similar pDrop values of 0.014 and 0.012

respectively, but have rank scores of 27.5 and 19.5.

Variable influence

There are 23, 30 and 20 key influential covariates in the OLCF,

PLCF and HCF models respectively (Table 3) with pDrop, 0.2.
It is not of general interest to examine the contribution of each of
these variables here; rather, we briefly review the influence of

themore important variables in the remainder of this subsection,
following the groupings in Table 1.

Baseline risk

Functions of cell-specific baseline fire occurrence rates
(lightning risk rank and logit human risk) appear as top pre-
dictors in their respective models. Transformations of the
baseline rates were used, because use of the original scale

resulted in heavy overestimation of counts in the Montane
Cordillera ecozone. Average standardised coefficients of
logit-human rate and its square are 0.284 and –1.634

(Table S3), revealing a quadratic effect (concave downwards)
of logit-human rate on fire occurrence probability that plateaus
for higher values of baseline human rate. The baseline rates

contribute to predictive skill by accounting for the underlying
strong spatial structure in the long-term expectations, which is
fairly stable over time. Despite the fact that a baseline rate is a
function of response random variable, this temporal stability

allows future predictions under the fitted models because the
baseline predictor assumes the same values over the spatial grid
for both our training and validation (future) dataset. Note that no

fires were reported in ,33 and 22% of the cells in BC during
1981–2014 (see Fig. 2). The baseline rates help to reduce the
false positive rate by allowing more accurate predictions over

the regions with no fire activity. It is also important to note here
that all subsequent variable effects are departures from the
baseline and should be viewed in that context.

Surface weather

Surface fire weather measures were the second most influen-
tial group of covariates that are common to all models. RELA-

TIVEHUMIDITY, PRECIPITATION LAG1, SDMC and PSUF
are influential in all models. The counter-intuitive positive
influence of RELATIVE HUMIDITY and PRECIPITATION

in the lightning models may be because lightning is associated
with the passage of storm fronts resulting in precipitation and
higher humidity on a broad regional basis. TEMPERATURE and
BUI have positive influences in the lightning models. In the HCF

model, ISI (a function of FFMC and wind speed) and WIND
SPEED have a positive influence. In short, lightning-caused fires
are favoured by warm, humid days, and human-caused fires by

dry, windy days, conditional in both cases on dry forest floor
fuels. The influence of the transformed variables and interaction
terms are more difficult to interpret. Because the FWI System

codes and indices all increase with decreasing fuel moisture
content and some with increasing wind speed, and DMC and
particularly DC also increase over the fire season, squared effects
may provide a levelling-off effect.
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plot represents a covariate in the three models. Dashed vertical line shows

that there is a large change in pDrop around the 0.2 threshold. Variables above

this threshold (23, 29 and 24) are the most influential predictors in the

Observed Lightning-Caused Fire (OLCF), Predicted Lightning-Caused Fire
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Ignition indicators

The ignition indicators variables are unique to each model.
Not surprisingly, LIGHTNINGSTRIKES and the LIGHTNING

INDICATOR were very influential covariates in the OLCF
model, although the LIGHTNING LAG2 has a negative influ-
ence, which is possibly a levelling-off effect. Because of the

high specificity of these lightning indicators, only 23 variables
were required to reach the pDrop threshold of 0.2 in the
OLCF model whereas 32 were required in the PLCF model.

Five indexes of atmospheric pressure and stability, most impor-
tantly the Showalter and Continuous Haines Indexes, were
influential in the PLCF model; including these variables
increased AUC for the PLCF model by ,2%.

Among the ecumene covariates specific to the HCF model,

WUI DISTANCE2 had a negative influence, as would be

expected. Preliminary analysis revealed there was a signifi-

cant change (reduction) in human-caused fire occurrence in

,1992 as shown in Fig S2. Thus, a CHANGE POINT

variable (0,1) was included to indicate pre- and post-1992

epochs; it was the third ranked predictor in the HCF model.

Although important in modelling past fires, the change point

is not used in future predictions. Whereas WEEKDAY was

not among the most influential variables in the HCF model, it

has interesting results. Friday–Monday and Tuesday–Thurs-

day have positive and negative influences respectively, con-

sistent with a weekend effect with persistence as shown in

Table 3. Importance rankA of the most influential variables by group (average group rank in parentheses) in the Observed Lightning-Caused Fire

model (OCLF, 23 of 53 variables), the PredictedLightning-CausedFiremodel (PLCF, 29 of 62 variables) and theHuman-CausedFiremodel (HCF, 20

of 72 variables)

Variable names followed by (–) indicate that the sign of the coefficient is negative. Between-model contrasts are shown by typeface: variables influential in a

single model (plain type); underlined, influential variables common to all models; italic, influential variables common to the lightning models. Ranks,

coefficients and pdrop values for all variables are in Tables S1–S3 and variable definitions are in Table 1

OLCF Variables RankA PLCF Variables Rank HCF Variables Rank

Baseline risk (1) Baseline risk (1) Baseline risk (4)

LIGHTNING RISK RANK 1 LIGHTNING RISK RANK 1 LOGIT HUMAN RISK2 (–) 1

LOGIT HUMAN RISK 6

Ignition indicator (8) Ignition indicator (28) Ignition indicator (22)

LIGHTNING STRIKES 2 SHOWALTER INDEX (–) 6 WUI DISTANCE2 (–) 22

LIGHTNING STRIKES INDICATOR 3 C-HAINES INDEX (–) 9

LIGHTNING LAG2 (–) 20 K INDEX 19

500 MB ANOMALY (–) 27

500 MB TENDENCY (–) 29

Surface weather (11) Surface weather (14) Surface weather (10)

SDMC 4 TEMPERATURE 2 RELATIVE HUMIDITY (–) 2

TEMPERATURE 5 SDMC 3 ISI 4

RELATIVE HUMIDITY 6 RELATIVE HUMIDITY 4 FFMC..ACCUM PRECIP 5

SDMC2 (–) 7 SDMC2 (–) 5 PSUF 7

PSUF 10 DC..ACCUM PRECIP (–) 7 ACCUMULATED PRECIPITATION 8

BUI 11 PRECIPITATION 11 DC2 9

DC.. ACCUM PRECIP 12 BUI 12 FWI2) (–) 11

PRECIPITATION LAG1 (–) 15 RELATIVE HUMIDITY2 (–) 13 SDMC 12

PRECIPITATION 16 DC.. TEMPERATURE (–) 14 WIND SPEED 17

DMC2 (–) 17 DMC.. ACCUM PRECIP (–) 17 PRECIPITATION LAG1 (–) 19

FFMC..ACCUM PRECIP 18 PRECIPITATION LAG3 (–) 18

DC2 (–) 23 PSUF 20

PRECIPITATION LAG2 (–) 21

FWI2 (–) 23

PRECIPITATION LAG1 (–) 24

FFMC 25

Geographic (16) Geographic (22) Geographic (14)

LONGITUDE (–) 8 LATITUDE 10 ELEVATION (–) 10

PACIFIC MARITIME 14 ROUGHNESS 15 ROUGHNESS 15

ROUGHNESS 15 PACIFIC MARITIME 16 PACIFIC MARITIME 14

ELEVATION2 20 TAIGA PLAIN (–) 26 BOREAL PLAIN (–) 16

BOREAL PLAIN 21 ELEVATION2 28

BOREAL PLAIN 35

Vegetation (16) Vegetation (20) Vegetation (16)

VEGETATED (–) 9 VEGETATED (–) 8 VEGETATED (–) 13

AVERAGE NDVI 23 CONIFER COVER 22 AVERAGE NDVI (–) 18

% CONIFER 31

AImportance rank as per the pDrop criterion depicted in Fig. 7 based on 500 model fits.
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Fig S3a. Tuesday (–) and Sunday (þ) were the most influen-
tial weekdays.

Geographic

LATITUDE and LONGITUDE have a positive influence
(south to north and from east to west respectively) in all models,
although latitude and longitude were only highly influential in

the PLCF and OLCF models respectively. ELEVATION2 and
ROUGHNESS have a positive influence in the lightning mod-
els, consistent with lightning in the mountains. Although most

fires occur in the Montane Cordillera ecozone (Figs S3b, S4),
PACIFIC MARITIME had a positive influence in all models,
whereas BOREAL PLAIN had a positive influence in the OLCF
and HCF models, and TAIGA PLAIN in the PLCF model.

However, we determined that ecozone effects are confounded
with baseline risk and ecumene covariates by refitting the
models (ensemble of 30 model fits) without these covariates.

Dropping baseline risk results in Montane Cordillera being
ranked as an important covariate with a positive influence,
whereas Taiga Plain and Boreal Plain have a negative influence.

The remaining two ecozones are dropped from the ranking
process. Dropping both the baseline risk and ecumene covariates
from the HCF model results in Boreal Plain and Montane

Cordillera having a positive influence and Taiga Plain and
Boreal Cordillera having a negative influence.

Vegetation

Vegetation covariates were among the least influential,
possibly because of the quite coarse scale of the modelling

framework (20 � 20-km cells) relative to the variation in
vegetative cover types. The amount of VEGETATED area
had a negative influence in all models, which may be associated
with a higher proportion of mountains or developed areas.

However, CONIFER COVER (Fig. 1a) had a positive influence
in the PLCF and HCF models. AVERAGE NDVI, a measure of
the seasonal trend in vegetation greenness, has a bell-shaped

distribution during the fire season over much of BC, increasing
from early spring to a summer peak, then declining; it was
specifically included as an index of seasonality. AVERAGE

NDVI has a positive influence in the lightning-caused fire
models, likely because lightning-caused fires have a similar
seasonal trend in BC. However, average NDVI has a negative
influence in the HCF model, reflecting the peak in human-

caused fires in the spring in some regions.

Discussion

Modelling approach

We used sampling to create M balanced datasets that we then

used to create an ensemble ofM fitted models. The advantage of
the ensemble is that, although there is the possibility of a single
model fit outperforming the ensemble, there is also the strong

possibility that it could perform worse. Our problem involved
more than 75 covariates of various types (categorical and
continuous), including interaction terms (Table 1). We prefer

the lasso-logistic model for this problem, because, as compared
with other forms of penalised regression forms, e.g. ridge
regression with L2-penalty, the L1-penalty in lasso allows
automatic variable selection by shrinking those coefficients to

identically zero that do not improve the model’s predictive skill.
Furthermore, the covariates with non-zero coefficient estimates
are generally readily interpretable. As our focus is on developing

models that have superior skill in predicting future fire occur-
rences for management purposes, optimisation of Eqn 2 using
k-fold cross-validation allows better generalisation of the

model to future fire-weather conditions. Nonetheless, non-linear
responses are difficult to estimate. Evaluation of and compari-
son with machine learning-based models is ongoing and will be

reported separately.
We used balanced datasets in our sampling procedure, which

is a recommended option in classification problems for rare
events data (see, for example, the Balanced Random Forests

algorithm in Chen et al. 2004). Although it is possible to adjust
for an arbitrary choice of case-control sampling ratio by adding
an offset term, evidence from literature suggests that classifiers

can exhibit substantial variability in predictive accuracy over a
broader range of ratios. This effect is especially pronounced for
highly imbalanced datasets (see, for instance, Byon et al. 2010).

That is, sampling ratio can act as an extra tuning parameter that
must be learned from training data, for instance via the cross-
validation approach. This is an interesting area for investigation

of logistic regression models with response-based sampling.
This was explored by Woolford et al. (2011) who demonstrated
that the estimated partial effects in a logistic generalised addi-
tive model for person-caused fire occurrence prediction are

sensitive to large reductions in the inclusion probability for
the non-fire voxels.

Predictive performance

Although the OLCF model has greater predictive skill than the
PLCF and HCF models, it is a retrospective model and its

application is largely in nowcasting (lightning-caused ignitions
that have occurred but may or may not have yet been detected)
whereas the latter models have a purely forecast application.
Although nowcasting is useful for directing detection efforts

following a lightning storm, forecast models have more value
for preparedness planning.

As was noted earlier, sharp peaks in the number of lightning-

caused fires are a critical process that has very significant
impacts on the fire management system and can result in large
areas being burned if several fires escape initial attack in high

fire danger periods. Although the OLCF model identifies peaks
in lightning fire occurrence (approximately .50 fires per day),
accurately predicting the number of fires on peak fire days is

difficult.
We used a 20� 20-kmgrid cell as the spatial sampling unit as

a compromise between the resolution of covariates and class
imbalance, both of which increase with decreasing cell size. We

consider it to be a mesoscale model in the meteorological sense,
recognising that there are microscale influences of vegetation
and topography on fuel moisture and so on ignition probability

(e.g. lightning ignitions will smoulder longer in deep forest floor
organic layers; Latham and Williams 2001; Wotton et al. 2005)
and such environmental detail is not represented at this scale.

Finer-scale models could be explored using the sampling
methodology introduced here, although there are issues with
both the spatial accuracy of historical fire records and incom-
plete knowledge of vegetation change over time.
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Variable selection and importance

Predictive analytics are ultimately limited by our knowledge of
the underlying processes and ability to accurately quantify
influential factors. In simple models of ignition probability such

as the 2-min test fires reanalysed by Beverly and Wotton (2007),
the covariates have very straightforward interpretations. How-
ever, the relatively large numbers of parameters inmore complex

spatiotemporal point process fire occurrence models can make
model estimation, interpretation and improvement challenging
(Schoenberg 2016). The development of a variable ranking

methodology was an important step because further model
improvements should result from identifying and enhancing the
representation of the most influential processes and covariates.

Because the focus of the present paper was on prediction, we

included baseline risk covariates as they were very important in
increasingmodel sensitivity and specificity, recognising that the
baseline risk may affect the interpretation of other variables.

Transforms of baseline risk were highly ranked in all models.
These rates can be viewed as estimates of spatial random effects
(one effect for each grid cell) – in principle, a model with 2541

fixed cell-effects – but fitting such a model is practically
implausible and is not done here. By calculating these baseline
values and using them as a predictor, we are estimating the

relationship between fire occurrence risk and the baseline, rather
than having a separate fixed effect for each individual cell. This
baseline risk effect accounts for otherwise unspecified cell-
specific factors or interactions related to the intensity of human

and lightning ignitions or the ignitability of fuels not well
represented by other covariates. For example, road density
was influential in the simple OLR HCF model without baseline

risk (Table S6) but it alone is an incomplete representation of the
intensity of human activity in models.

There are alternative methods for representing baseline risks.

For example, Brillinger et al. (2003) modelled baseline fire
occurrence risk using spatial and seasonal smoothers. A similar
approach was employed by the models of both fire occurrence

and large fire risk of Preisler et al. (2004). An advantage of the
use of smoothers is that they can account for non-linear effects.
As such, further refinement of our methodology might include
temporal variation in baseline risk. We tested monthly

(v. annual) human-caused baseline fire risk but it did not
improve HCF model fit. This may be an effect of including
seasonally changing variables, as was also noted by Preisler

et al. (2004). Furthermore, human activity and its relationships
with fire occurrence risk may not be stationary at any location
over the 30-year period owing to changing land use; baseline

risk may be sharpened, perhaps by using a weighted moving
average of annual events.

Weather and FWI System values, their transformations and

derivatives were consistently important covariates in all models

in as much as they represent fuel moisture and ignitability. It is

noteworthy that SDMC and PSUF (Lawson and Armitage 1997,

probability of sustained ignition eqn 9D), which were used in a

lightning fire occurrencemodel for Ontario (Wotton andMartell

2005), were also influential in the BC models. Several PSUF

models have been developed through experimentation in differ-

ent vegetation types (Beverly and Wotton 2007) that could be

evaluated for different ecological conditions.

The OLCF model is conditional on the known time and
location of lightning strikes, and this likely explains the high
AUC. In contrast, the PLCF and HCF models estimate the

outcome of two processes – the likely location of lightning
strikes and anthropogenic ignition sources, and the occurrence
probability. The probable locations of lightning and human fire-

causing activity are but crudely estimated through the use of a
few atmospheric stability indices in the case of lightning, and
ecumene metrics such as population and road length for human

activity; the latter variables have no daily or seasonal dynamics
that mirror human activity. Further model development might
separate the intensity and occurrence probability processes by
developing more sophisticated models or indices of lightning

fire potential, or temporally varying indices of human activity in
wildlands. For example, information from anonymised mobile
phone geolocation data may be a promising source of high-

resolution spatiotemporal information on human presence in
wildlands with cell coverage (e.g. Deville et al. 2014).

Whether lightning is accompanied by rain is critical to

whether ignitions are sustained but is difficult to estimate in
fairly sparse weather station networks. Precipitation distribution
varies within thunderstorm cells, and because there is a higher

probability of fire starts on the edges of cells, the distance to storm
centres might provide a proxy (Woolford and Braun 2007).

An illustration of the spatial pattern of predicted and observed
fires, and of the total number of predicted and observed fires

acrossBritishColumbia for 4 peak days in 2009 is shown inFig. 6.
We anticipate that such spatial occurrence maps and correspond-
ing estimates of new fire starts will be a valuable tool for

prevention and preparedness planning and decision-making,
including public advisories and access restrictions, resource
sharing between fire control agencies, man-up or readiness levels,

prepositioning fire crews and aircraft, and detection aircraft
routing. The models developed here, as well as similar models
for other regions ofCanada, are being implemented in theCWFIS.
Data-driven modelling requires good data; ongoing collaboration

with fire managers will be important in improving data quality.
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