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A reporting error in the original version of the results under the sectionGLMMs using 80% fire hotspot detection confidence threshold

(p. 1094) has been brought to our attention. The result read that the difference between the 30% and 80% fire hotspot detection
confidence threshold models for the year 2015 was the omission of the logging and oil palm concessions, but oil palm concessions

were removed from both models due to their being insignificant. As such, the report should have stated that the only difference
between the 2015 models was the omission of the logging concessions.

The original statement in the result section was: ‘‘A notable difference is the omission of logging and oil palm concessions from the
2015 model, oil palm concessions and biomass from the 2011 model, and pulpwood concessions from the 2005 model because they
were not significant.’’

It should be corrected to: ‘‘A notable difference is the omission of logging concessions from the 2015model, oil palm concessions and

biomass from the 2011 model, and pulpwood concessions from the 2005 model because they were not significant.’’

We acknowledge Sean Sloan (Vancouver Island University) for bringing the error to our attention.
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Abstract. Biomass fires in Indonesia emit high levels ofgreenhousegases andparticulatematter, key contributors toglobal

climate change and poor air quality in south-east Asia. In order to better understand the drivers of biomass fires across
Indonesia over multiple years, we examined the distribution and probability of fires in Sumatra, Kalimantan (Indonesian
Borneo) and Papua (western New Guinea) over four entire calendar years (2002, 2005, 2011 and 2015). The 4 years of data

represent yearswithElNiño andLaNiña conditions and high levels of data availability in the study region.Generalised linear
mixed-effects models and zero-inflated negative binomial models were used to relate fire hotspots and a range of spatial
predictor data. Geographic differences in occurrences of fire hotspots were evident. Fire probability was greatest in mixed-
production agriculture lands and indeeper, degradedpeatlands, suggestinganthropogenic activitieswere strongdeterminants

of burning. Drought conditions in El Niño years were also significant. The results demonstrate the importance of prioritising
areas of high fire probability, based on land use and other predisposing conditions, in effective fire management planning.
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Introduction

Biomass burning, the combustion of organic matter generally in
the form of vegetation or the partially decomposed remains of

plants that form peat, is a natural, if rare, phenomenon in tropical
ecosystems in the absence of human activity. In humid, highly
biodiverse rainforests, natural fires are characterised by long

return intervals with fairly low, generally reversible impacts on
forest stands (Goldammer 2016). Recent decades have, how-
ever, seen an increase in the frequency and magnitude of major
pantropical fires associated with human activity such as land-

use changes, with some of the most severe biomass burnings
occurring in peatlands in south-east Asia (Page and Hooijer
2016). Increasing pressure from humans coupled with climate

change are likely to drive increases in biomass burning in the
future andmay lead to alternative stable states in which fires and
fire-tolerant vegetation are the norm (Brando et al. 2019).

Peatlands are important terrestrial carbon sinks storing up to
46% of global soil carbon (Page and Hooijer 2016). Degraded
peatlands are highly susceptible to burning and can shift from

being carbon sinks to sources through oxidation and fire-related
emissions; degraded peatlands in the tropics account for,75%
of annual greenhouse gas emissions from modified peatlands
globally (Leifeld and Menichetti 2018). Fire management,

especially in peatlands, is thus increasingly viewed as a priority
for global climate change mitigation.

Indonesia accounts for ,80% of the total peatland area in

south-east Asia (Evers et al. 2017; Fig. 1) and .75% of total
pantropical wetland (peatland andmangrove combined) climate

change mitigation potential (Griscom et al. 2020). Since the late
1980s, large tracts of peat swamp forests in Indonesia have been
rapidly converted through state-supported agribusiness schemes

into oil palm and pulpwood plantations (Miettinen et al. 2012a;
Goldstein 2016). Fire is commonly used as a cost-effective
means of preparing land for plantations and agriculture

(Simorangkir 2007), and has been resorted to in disputes over
land and resources (Dennis et al. 2005).

Carbon released during biomass burning contributes to
atmospheric loadings of greenhouse gases (Parker et al. 2016).

Particulate emissions from peatland fires form haze pollution,
leading to adverse health impacts (Koplitz et al. 2016; Tan-Soo
and Pattanayak 2019) and heavy economic losses (World Bank

2016) in Indonesia and in neighbouring countries. Notable haze
events in 1997–98 and 2015 coincided with El Niño, when
lower-than-normal rainfall levels generated prolonged drought

conditions conducive for burning (Reid et al. 2012; Fanin and
Van Der Werf 2017). Haze events were also documented in
2013 and 2014, however, when there were no prolonged

droughts in the region. This suggests a decoupling of fires from
climate cycles and a possible reduction in overall fire-resistance
of the environment (Gaveau et al. 2014).

Statistical modelling of biomass fire distributions as a func-

tion of spatially explicit variables related to land use contributes
to the understanding of the drivers involved (Stolle et al. 2003).
Yet many such studies in Indonesia tend to be restricted to

individual provinces and to particular land-cover types (e.g. Stolle
etal.2003;Cattauetal.2016;Sumarga2017).Given that biomass
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fires are widely distributed in Indonesia, and that many regula-
tions regarding fire and land use are established at the national
level, the absence of a large-scale investigation of the factors

influencing fires that spans multiple, biomass-fire-prone pro-
vinces impedes development of targetedmanagement strategies.

To fill this gap, the present paper addresses the following
research questions. First, what are the major factors influencing

the presence of biomass fires in Indonesia? Second, how have the
impacts of these factors changed between El Niño and La Niña
years? Our investigation draws on the conceptual framework

developed by Stolle et al. (2003), which divides the factors influ-
encing biomass burning into predisposing conditions (biophysical
conditions conducive to spreading and sustaining fires) and ignition

(actions that have the potential to initiate burning, such as land
clearing and arson). For the latter, proxies were used to denote
human activities, such as population density and accessibility.

Methods

Study area

Indonesia is located between 158S and 88N and 908E and 1508E
and surrounded by the Pacific and Indian oceans. Our study
focuses primarily on provinces on the island of Sumatra, Indo-

nesian Borneo (Kalimantan) and western New Guinea (Papua;
Table S1, available as Supplementarymaterial to this paper). All
provinces included in this study are peatland-rich and have been

the foci of major biomass fires in the recent past.
Thecountry canbedivided into threebroadclimatic regionson

the basis of the timing of the main wet seasons: (1) southern

Sumatra to Papua, with above-average rainfall fromNovember to
March; (2) northern Sumatra, including Riau, and north-western
Kalimantan, characterised by heaviest rainfall during October

to November and March to May, with intervening drier periods;
and (3) Maluku and the northern regions of Sulawesi, with
June to July the wettest period (Aldrian and Dwi Susanto 2003;

FaninandVanDerWerf2017).Seasonalprecipitationpatternsare
also affected by theElNiño–SouthernOscillation (ENSO),which
exerts strong influence on fire activities (Fanin andVanDerWerf

2017) from June to November (Aldrian and Dwi Susanto 2003;
Spessa et al. 2015), and by interactions between ENSO and the
Indian Ocean Dipole (IOD) (Pan et al. 2018). In general, ano-
malously low rainfall levels are recorded across Indonesia during

the northern hemisphere summer and autumn months, i.e. during
El Niño development stages, with the opposite case in La Niña
years. Notable differences do occur, particularly in the spatial

pattern of impacts and the temporal occurrence and frequency of
extremes associatedwith the two phenomena (Supari et al. 2018).

Data

The study utilised data from four years, 2002, 2005, 2011 and

2015, based on a range of climate conditions across the study
region and the availability of data in Sumatra, Kalimantan and
Papua. The years 2002 and 2015 were climatically dry years

associated with the development of moderate to very strong
El Niño signals, whereas 2005 and 2011 corresponded to weak
and moderate La Niña events respectively and were thus rela-
tively wet (Hendon 2003; Null 2018).

Fire hotspot data were obtained from NASA FIRMS’ (Fire
Information for Resource Management System) MCD14ML
collection 6 (Giglio et al. 2018). Each fire hotspot represents a

1-km pixel in which a fire or multiple fires have been detected by
algorithms used to process data fromMODIS (Moderate-Resolu-
tion Imaging Spectroradiometer) sensors. The product comes

with confidence estimates to indicate the quality of detection.
To minimise the chances of false fire hotspot detections, we used
data with $30% confidence (i.e. nominal to high confidence of

true fire hotspot detection; Giglio et al. 2018). A more stringent
detection confidence threshold of 80%, which is often reported
in Indonesia’s forest and fire monitoring system (Ministry of
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Fig. 1. Peatland distribution (highlighted in black) in Sumatra, Kalimantan and Papua, Indonesia. Grey-shaded provinces represent the areas of

study. Abbreviated province names are: AC, Aceh; SU, North Sumatra; RI, Riau; SB,West Sumatra; JA, Jambi; BE, Bengkulu; SS, South Sumatra;
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Kalimantan; PB, West Papua; PA, Papua.
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Environment and Forestry 2015), was also used for a second set of
models. Non-fire-related thermal anomalies from volcanic activ-

ities were removed from a 5-km buffer around volcanic eruption
sites. We did not distinguish between fire ignition and spread
(Vayda2006), as peatland fires can continue to burnbelowground,

making estimates of the durationof individual fire events difficult.
A mixture of spatial predictor variables was used (Table S2).

We used south-east Asia land-cover maps with classes ranging
from intact mangrove and montane forests to anthropogenic

land-covers, such as mosaics of farmland, regenerating vege-
tation and urban areas (Miettinen et al. 2012b, 2016). Land-
cover classes were reclassified to avoid an overabundance of

categories and therefore an insufficient number of data points
per class (Sumarga 2017) and to remove any ambiguity over
different categories of plantations (Table S3). Additionally,

aboveground live woody vegetation biomass (Avitabile et al.

2016) was used as a proxy of potential fuel (Hoscilo et al. 2011).
An averaged fire weather index (FWI) for the whole year

and dry season from June to November (JJASON) was taken
from the Global FireWeather Database (GFWED; NASAGISS
2019). Reduced and enhanced rainfall during JJASON are
strongly correlated with the progression of El Niño and La

Niña respectively (Hendon 2003; Dowdy et al. 2016), and act as
a strong predictor of fire activity (Fig. 2) (Spessa et al. 2015;
Sze et al. 2019). FWI combines multiple meteorological vari-

ables that influence the likelihood of fire ignition and spread,
such as temperature, relative humidity, wind speed and

precipitation (Field et al. 2015). Given the levels of uncertain-
ties associated with different estimates of precipitation (Heyer

et al. 2018), we averaged the Modern-Era Retrospective analy-
sis for Research and Applications, Version 2 (MERRA-2), rain
gauge-corrected MERRA-2 and Climate Prediction Centre

gauge-based precipitation data. These data were chosen based
on availability for all 4 years of analysis. Two separate
components of the FWI system – the drought code (DC) and
fine fuel moisture code (FFMC) – were also acquired (De Groot

et al. 2007; Field et al. 2015).
Topographic variables, such as slope and elevation (Jarvis et al.

2008), were used as proxies for the level of difficulty in cultivating

crops in an area (Sumarga 2017) and ease of facilitating fire spread
on steeper land (Sze et al. 2019). Peatland depth intervals were
averaged to obtainmean depth values of 25, 75, 150, 250, 300, 600

and 1000 cm (Wahyunto et al. 2003, 2004, 2006).
Rivers facilitate the access of people to otherwise remote,

inaccessible locations and are also important sources of peatland

moisture (Sumarga 2017). We included large river networks,
expressed as polylines with an upstream catchment area of
,8 km2 (Lehner et al. 2008; Lehner 2013). As each fire hotspot
denotes the centre of a 1-km pixel with detection of $1 fire, the

precise locations of the fires are not known; therefore, a distance-
based measure was not used to avoid introducing uncertainty.
Instead, we calculated river density per pixel using the line density

function inArcGIS (ESRI 2014), generating a raster measuring the
number of river segments per pixel.
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Fig. 2. Averaged Fire Weather Index (FWI) based on three gauge-based precipitation data and fire hotspots in

the study region from 2000 to 2015. Years with stronger El Niño signals (2002 and 2015) had higher FWI values,

corresponding to a higher number of fire hotspots. Years with stronger LaNiña signals (2005 and 2011) had lower

FWI values and relatively lower number of fire hotspots.
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Most of the data for logging and pulpwood concessions
(Greenpeace 2014) were dated according to the year of permit
issuance. We assumed that no plantation can be established

before receiving permits and removed concessions with no
permit issuance date. Thus, our data exclude illegal concessions
and those with incomplete information. By comparison, the oil

palm concessions dataset (Greenpeace 2014) lacked dated
information for most of the permits. Given that the average life
cycle of an oil palm plantation is 25–30 years and that 70% of

industrial plantations in the region were established since 2000
(Miettinen et al. 2012a), we assumed that the concessions were
in existence throughout the modelled years. All concessions
were expressed as presence–absence values.

We also investigated the inclusion of land-cover change as a
possible driver of biomass fires, but encountered difficulties in
arriving at a single variable, owing to the large number of

different land-covers and uses and discrepancies among various
map data available. We were able, however, to incorporate
primary forest cover changes from 2002 to 2012 (Margono et al.

2014) as a proxy of changes in land-cover as a result of human
activities (Table S4).

Finally, population density from the Global Population

World Grid ver. 4.0 (Center for International Earth Science
Information Network (CIESIN) 2018) and accessibility (Nelson
2008;Weiss et al. 2018) were included to reflect the intensity of
land use and ignition potential in an area.

Data processing and analysis

All data layers were resampled to a 5-km grid with nearest-

neighbour interpolation for categorical variables and bilinear
interpolation for continuous variables. A resolution of 5 km was
chosen as a trade-off between accuracy and computing power.

Continuous variables were standardised (deduct the mean, divide
by the standard deviation) to account for different scales in
measurement units across variables. In an initial set of analyses,
pixelswith fire hotspots (hereafter referred to as ‘fire pixels’)were

assigned a value of 1 to denote presence. The same number of
pseudo-absence pixels as presence pixels was randomly selected
to avoid the problem of unbalanced sampling (Sumarga 2017).

We dropped the urban and water classes from the land-cover
data because these classes are unlikely to be associated with
biomass fires. Predictor variables were tested for multicollinear-

ity and dropped if the general variance inflation factorwas greater
than 4 (Zuur et al. 2009). Through this process, we dropped the
annual FWI data and separated the FWI subcomponents into

different analyses. For the analyses using 80% hotspot detection
confidence, the mangrove class was combined with the forest
class owing to an insufficient number of fire pixels.

Generalised linear mixed-effects models (GLMMs) with a

binomial error structure, a logit-transformation and provinces or
subregion as random effect(s) were fitted to the data in the first
set of analyses. Regional differences in fire occurrences were

expected but were not the main interest of our models and
therefore included as random effects. A model was fitted for
each year to capture years with El Niño and La Niña events.

The models followed the general equation:

Yij � Bin 1; pij
� �

logit pij
� � ¼ ln

pij

1� pij

� �
¼ aþ b1x1 þ b2x2 þ . . .þ bnxn þ ai

ai � N 0; s2a
� �

where: Yij¼ 1 if pixel j in province i has fire and 0 otherwise;
p¼ probability of a fire pixel; a¼ intercept;bn¼ coefficients of

predictor variables; xn ¼ predictor variables; ai ¼ random
intercept, which is assumed to be normally distributed with
mean ¼ 0 and variance ¼ s2a.

Model results were expressed as the odds ratio (OR) between

the probability of a pixel being a fire pixel against the probability
that it is not (Stolle et al. 2003). TheORwas calculated by taking
the exponent of the coefficient estimate (Peng et al. 2002),

where OR . 1 indicated a positive effect and 0 , OR ,1 a
reduced effect of the predictor variable on the response variable.
For categorical variables, ORwas the ratio between the odds of a

class compared with a baseline class: concession variables
compared with the absence of the concessions; mangrove,
mosaic, open area, water and plantation covers compared with

the forest cover; and forest degradation status with cleared forest
(Stolle et al. 2003). We then conducted model simplification
through backwards stepwise selection to remove non-significant
predictor variables (P. 0.05) based on chi-square tests from an

initial global model that contained all variables (Crawley 2013).
This resulted in different models reported for each year.

In another set of analyses, the response variable was fire

hotspot count per pixel. Count data are often used as a proxy for
the extent of actual fires in which the number of fire hotspots is
correlated with the average size of area burned (Tansey et al.

2008). We used zero-inflated negative binomial (ZINB) regres-
sion to account for overdispersion and excess zero counts arising
from underlying processes independent of those generating

count values. Where the zero-inflation component was insignif-
icant, we used a negative binomial model (NB) instead. TwoNB
calculation methods are available for modelling linear and
quadratic mean-variance relationships. We selected the appro-

priate model based on the greatest reduced dispersion ratio and
Akaike Information Criterion (AIC) (Bolker et al. 2012). Model
coefficients of .0 indicated a positive correlation and ,0 a

negative correlation between the predictor variable and response
variable.

All data were processed in ArcGIS 10.3 (ESRI 2014).

Analyses were performed in Rstudio using the lme4 (Bates
et al. 2015) and glmmTMB (Brooks et al. 2017) packages.

The fit of the GLMMswas partially assessed by theR2 values
using the MuMIn package (Bartoń 2018). The marginal R2

refers to the percentage of variance explained by the fixed
effects, whereas the conditional R2 refers to the variance
explained by the overall model. The package further reports

the theoretical and delta R2 for binomial distributions. The
former assumes a theoretical variance of p2/3 for all
observation-level data, whereas the latter uses the observation-

level variance (Nakagawa et al. 2017). Additionally, we calcu-
lated the Brier Score and Area under the Receiver Operating
Characteristic Curve (AUC) using the ROCR package

(Sing et al. 2005). The AUC measures model accuracy where
anAUC¼ 0.5 amounts to randommodel prediction andAUC¼ 1

Spatial correlates of biomass fires in Indonesia Int. J. Wildland Fire 1091



indicates an accurate model (Elith et al. 2011). The Brier Score
measures the models’ predictive accuracy along a range of 0–1,

where a score of 0 refers to high predictive accuracy and vice
versa (Brier 1950). For the ZINBmodels, themean squared error
(MSE), root-mean-square error (RMSE) and mean absolute

error (MAE) were calculated using the Metrics package
(Hamner and Frasco 2018).

Results

Spatial and temporal distribution of fire hotspots

Fire hotspots were distributed unequally across the study area,

with most concentrated in a few provinces, such as Central
Kalimantan and South Sumatra. Although the percentage of
fires in the two provinces in Papua constituted only a small

fraction of the total fire hotspots detected, the number of hot-
spots in 2015 (14 793 hotspots) greatly exceeded those in 2002
(5465 hotspots). Fires also tended to cluster on peatlands com-

pared with sites on mineral soils (Table 1), especially in areas
where there are plantations and other forms of human activities
(Table S5).

Fire hotspots were 2–3 times more numerous in the 2 dry
years 2002 (n¼ 91 183) and 2015 (n¼ 143 111), compared with
2005 (n¼ 60 821) and 2011 (n¼ 50 196) with wetter weathers.
The sensitivity to meteorological effects varied by provinces

across the study region. For example, Riau, on the island of
Sumatra, experienced a high number of fire hotspots from
January toMarch, irrespective of ENSO strengths. This suggests

either precipitation patterns in Riau are not closely regulated by
ENSO, or a decoupling of burning from rainfall levels in the
province. In terms of temporal distribution, fire hotspots gener-

ally started appearing in July andpeaked inAugust toSeptember.
A smaller peak in fire hotspots during Februarywas attributed to
several provinces in northern Sumatra and north-west Kaliman-
tan, which have two dry seasons. By comparison, fire hotspots in

the two provinces of Papua lagged by a month, peaking in
September to October (Fig. S1).

GLMMs using 30% fire hotspot detection confidence
threshold

The first set of analyses had 31 206, 23 856, 24 376 and 34 424

pixels for the years 2002, 2005, 2011 and 2015 respectively.
Provinces in south-west Sumatra, West and Central Kalimantan,
and south Papua evinced higher probabilities of fire (Fig. 3).

Burning tended to occur in low-lying areas that were fairly
accessible, but also supported low population density (Fig. 4).
Areas with mixed-production systems (i.e. mosaic and open
areas) where forest cover had been replaced by agriculture or

shrub vegetation were most prone to fires (OR 1.41–2.86 com-
pared with forested areas). Plantation and regrowth land-cover
were also significant predictors of fires (OR 1.70–2.16), although

the effects dependedon the typeof concessions.Of the three types
of concessions considered, odds of fire increased within pulp-
wood and oil palm and decreased within logging. Where peat-

lands were converted to agriculture, susceptibility to burning
increased with peat depth (OR 1.05–1.4 inmosaic, open-area and
plantation covers on peatlands). Primary intact forests were less

likely to burn compared with non-primary forests and degraded
primary forests. Relatively high FWI values were associatedwith
greater probability of fire pixels that characterised the 2 dry years
(2002 and 2015) included in the analysis.

Approximately 40–42% of the variance was explained by the
models, 29–33% of which was explained by the predictor
variables. Model fits were acceptable with AUCs of 0.83–0.86

and Brier Scores of 0.15–0.16 (Table S6).

GLMMs using 80% fire hotspot detection confidence
threshold

Setting 80% as the detection confidence removed ,50% of
pixels from our existing data, resulting in sample sizes of 16 320,

Table 1. Fire hotspot density between non-peat and peat soils

Geographic

location

Non-peatA Peat

Fire hotspot

count

Fire hotspot

densityB
Fire hotspots on non-peat area

(%)

Fire hotspot

count

Fire hotspot

density

Fire hotspots on peat

(%)

2002 (n¼ 91 183)

Sumatra 15 853 38.61 17.39 9935 153.28 10.90

Kalimantan 40 991 85.87 44.95 18 939 334.82 20.77

Papua 3670 10.99 4.02 1795 22.89 1.97

2005 (n¼ 60 821)

Sumatra 16 273 39.64 26.76 24 142 372.47 39.69

Kalimantan 14 263 29.88 23.45 4647 82.15 7.64

Papua 951 2.85 1.56 545 6.95 0.90

2011 (n¼ 50 196)

Sumatra 15 749 38.36 31.38 11 511 177.59 22.93

Kalimantan 14 750 30.90 29.38 6332 111.94 12.61

Papua 1254 3.76 2.50 600 7.65 1.20

2015 (n¼ 143 111)

Sumatra 26 151 63.69 18.27 32 044 494.38 22.39

Kalimantan 40 875 85.62 28.56 29 248 517.08 20.44

Papua 9993 29.93 6.98 4800 61.20 3.35

ANon-peat area was calculated by subtracting the area of peatland (Wahyunto et al. 2003, 2004, 2006) from total land area.
BFirehotspot density expressedasnumberper 1000km2 (Miettinen et al.2017).Total land areacalculated from theDatabase ofGlobalAdministrativeAreas (2018).
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10 442, 10 390 and 18 762 for respectively 2002, 2005, 2011 and
2015. The overall effects of the predictor variables in terms of

direction and magnitude remained consistent to the models with
$30% fire hotspot detection confidence and are shown in
Fig. S2 and S3 rather than described here. A notable difference is
the omission of logging and oil palm concessions from the 2015

model, oil palm concessions and biomass from the 2011 model,
and pulpwood concessions from the 2005 model because they
were not significant.

ZINB models

The results of the ZINBmodels were largely consistent with the
results of the GLMMs. There were 52 216, 52 216, 51 947 and
52 719 pixels for the models of the years 2002, 2005, 2011 and
2015 respectively. The presence of pulpwood concessions,

disturbed land-covers and degraded peatlands was positively
correlated with the occurrence of higher numbers of fire hot-
spots (Fig. 5). For intact peatlands (not developed into planta-

tions or modified in other ways), peat depth was negatively
correlated with the number of hotspots. Oil palm concessions
were associated with an increase in fires in 2002

(bOilPalm ¼ 0.11, 95% confidence interval ¼ [0.07, 0.15]) and
2005 (bOilPalm ¼ 0.44 [0.38, 0.51]), but not in 2011
(bOilPalm¼�0.05 [�0.1, 0]) and 2015 (bOilPalm¼�0.06 [�0.1,

�0.02]). In contrast, lower number of fires were associated with
higher river density, biomass, population density and elevation.
Primary intact forests showed a marked decline in fire count

compared with primary degraded or non-primary forests. Model
evaluation metrics are reported in Table S7.

Several provinces such as West Kalimantan, Central
Kalimantan and South Sumatra had relatively large numbers
of fires (Fig. S4) due to unaccounted for subregional and
province-level factors. Lampung, Aceh and West Papua had

comparatively low numbers of fires across all years.

Discussion

Land-covers characterised by mixed production systems and
plantations, in addition to the degree of access, exhibited strong

influence over the occurrence of fires. Our models indicate that
fires occur in response to anthropogenic land use and cover and
are thus in agreement with the findings of Vetrita and Cochrane
(2020) based on MODIS satellite data for Sumatra and

Kalimantan over the last two decades. However, our results were
novel in distinguishing two different levels of detection confi-
dence.We found that predictor variables generally had the same

effects on fires across the years, irrespective of the occurrence of
drought conditions, and whether fire hotspots were detected
using the 30 or 80% detection confidence. This finding has

important implications for evaluating the performance of fire
interventions, usually reported as the reduction in hotspot count.
Only comparing the absolute fire hotspot numbers pre- and post-

intervention overlooks how different detection confidence
thresholds, oftentimes underreported, can affect hotspot counts,
and subsequently, the fire pixels. Clearer reporting of the

Zero inflated intercept

Plantation:peat depth

Plantation/regrowth
Peat depth

Open area:peat depth

Open area

Mosaic:peat depth
Mangrove:peat depth

Mosaic
Mangrove

Pulpwood concession
Oil palm concession

Logging concession
Intercept

FWI

River density
Slope

Population density
Biomass

Accessibility

Primary intact forests
Primary degraded forest

Non-primary forest

Elevation

–4 –2
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Logit component

Negative binomial component

–3 –1 0
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2015
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2015

–2 –1 0 1

Fig. 5. Non-transformed coefficients of the negative binomial and logit components for the zero-inflated negative binomial (ZINB)

models using fire hotspot count as the response variable. Predictor variables with coefficient. 0 were correlated with higher number of

fire hotspots. The zero-inflated intercept represents the odds of encountering a structural zero.
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detection confidence, along with comparing the relative effects
of predictor variables on fire occurrence across larger geo-
graphical regions, can yield a clearer picture of intervention

effectiveness.
Although Papua and West Papua provinces only account

for a small percentage of total fire hotspots, the increase in

number of fire hotspots between 2002 and 2015 may reflect a
rapid clearing of primary forests (,0.2 Mha loss from 2002 to
2012) that rendered the landscape increasingly flammable

(Margono et al. 2014). These results highlight the importance
of not only prioritising areas of high fire probability for fire
management based on specific land use and predisposing condi-
tions, but also serve to focus preventative interventions on regions

such as Papua with rising fire occurrences in more recent years.
Our results corroborated previous work identifying the

importance of anthropogenic drivers in biomass fires in Indo-

nesia. However, we found that high population density lowered
the number and probability of fire pixels and hotspots, a result
supported by Sze et al. (2019) and Lilleskov et al. (2019) in their

more finely resolved, province-specific analyses. The relation-
ship is reflective of fire-setting activities being initiated on land
that is fairly remote from settlements and therefore more likely

to be less closely monitored and regulated. Where population
densities are high, such as in and close to urban areas, fire
occurrences are low owing to the shortage of combustible
biomass and higher levels of fire suppression (Syphard et al.

2009; Price and Bradstock 2014; Cattau et al. 2016). Under such
conditions, identifying perpetrators is difficult (Thung 2018).
Interventions targeted at building local capacity and institutions

to manage uncontrolled fires can be important in reducing the
overall fire risk in these areas. Examples include training and
financing firefighters, such as local firefighting communities

established by the Ministry of Environment and Forestry
(Ni’mah et al. 2018), and providing incentives for alternative
zero-burning practices.

The effects of anthropogenic activities on combustion

increase with peat depth. In contrast, organic-rich soils support-
ing forest and mangrove vegetation had lower fire risks due to
the presence of relatively high watertables. The results support

regulations such as the Indonesian Government’s moratorium
restricting development on deep peatlands. Where peatlands
have been degraded, programs to restore watertable levels and

regenerate native vegetation can be key to reducing fires and
transboundary haze. In 2016, the Indonesian Government
launched a National Peatland Restoration Agency (Badan

Restorasi Gambut, BRG) with the goal of restoring 2.6 Mha
of peatlands, two-thirds of which are in corporate concession
areas (Astuti 2020) within a 5-year-long period. To improve fire
prevention, BRG established a system for monitoring peatland

watertable levels across Indonesia in anticipation of drought
conditions (Arumingtyas 2019). Launch of the BRG constitutes
a first, ambitious step in combating peatland degradation,

although further involvement of plantation owners and small-
holders in providing effective support for efforts to manage fires
on peatlands in the long term is crucial.

We expected lower probability and number of fires within
logging concessions, as the initial stages of logging operations
require little to no land preparation involving fire use. Using
similar datasets, Abood et al. (2015) showed that forest cover is

higher within logging concessions compared with pulpwood
and oil palm concessions. Leftover biomass litter from logging
to clear land for monoculture concessions can provide fuel for

subsequent burning, increasing the risk of repeated fires at later
stages of development (Hoscilo et al. 2011).

Oil palm concessions were not a significant predictor of fires

in 2015. Fires are frequently employed during the initial stages of
land preparation for planting oil palm, and fire risks decline as the
cropmatures (Gutiérrez-Vélez et al. 2014). A closer examination

of the dataset revealed that dated permits were mostly granted in
the late 1990s–early 2000s, corresponding to the period of growth
in privately owned oil palm plantations (Goldstein 2016). By
2015, many of these concessions – if established – would have

reached production maturity. However, the development of palm
plantations is a multistage and multi-actor process, with estab-
lishment often triggering an influx of migrants to surrounding

areas, especially when smallholders are subcontracted by planta-
tion companies to grow oil palm on land they have access to. This
pattern of land use is consistent with data showing rises in

smallholder participation in oil palm production (Sheil et al.
2009) and aggregation of smallholder agriculture around planta-
tions (Sloan et al. 2017). Our models did not factor in distance-

based predictors for concessions, which can fail to detect the
interactions between concessions and surrounding land use.
Longer-term studies accounting for distance-related measure-
ments from concessions could reveal more insights into the

agents and drivers involved in burning.
FWI was also a major predictor of fires in our study,

especially for 2015 with stronger El Niño signals. Its subcom-

ponents, the FFMC and DC, are indicative of probability of
ignition and potential to burn respectively (De Groot et al.
2007), and are affected strongly by El Niño type and IOD phase

meteorological conditions (Pan et al. 2018). We found all these
indices to have greater effect on fire probability during the years
with stronger El Niño signals (Figs S5 and S6). However, our
models used a fairly coarse averaged-value approach and

therefore only captured parts of the seasonal and geographical
variations in meteorological patterns and fires. The literature
suggests that relationships between meteorological factors and

fires may be non-linear and based on threshold values (Spessa
et al. 2015; Field et al. 2016). For example, 200–305 mm of
rainfall accumulation is a crucial threshold for determining fire

susceptibility in southern Sumatra and Kalimantan (Fanin and
Van Der Werf 2017). El Niño episodes are projected to become
more frequent and intense in the region in the future (Cai et al.

2014), thus increasing the frequency of meteorological condi-
tions conducive to major biomass fires. Early warning systems
that enable effective fire management interventions, based on
accurate predictions of the sensitivity of peatland biomass to

burning, will therefore become an increasing part of attempts to
mitigate climate change and protect important forest and peat-
land ecosystems and their services, including carbon storage.

The current study has some limitations related to data and
model choice. Owing to data paucity, we excluded crucial
predictors that are known to be strong predictors of fires on

peatlands, such as canal infrastructure and land-use zonings
(Hoscilo et al. 2011), potentially reducing the R2 as a result.
With regards to the land-cover data, improvementsweremade in
the 2015mapping approach to better classify land-cover classes.
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As such, the 2015 land-cover map was not directly comparable
with the previous years, resulting in only 4 years selected for
modelling, which may bias against years with less ENSO

influence. Resampling was conducted owing to different spatial
resolutions in the variables, which are a potential source of error.
Occasionally spatial errors can be as high as 50% of the pixel in

the case of categorical nearest neighbour resampling, such as the
reduction in land-cover heterogeneity, especiallywhen resampling
from finer to coarser resolutions (Christman and Rogan 2012).

For continuous surfaces, resampling may result in loss of
accuracy that can affect model results, such as generating the
opposite estimation directions (Dixon and Earls 2009). How-
ever, resampling was necessary to ensure that datasets were

comparable for analysis.
A further limitation is that only a cross-section of fire events

was modelled, whereas many of the processes and conditions

related to the predictor variables have delayed effects. For
example, fire impacts may lag behind land-use changes because
of the time taken for fuel loads to accumulate beyond a

threshold conducive for fires to start and subsequently spread.
Our models were also unable to test for the effects of climate
patterns on fire occurrence, given that we only conducted

analyses for 4 years with El Niño and La Niña signals.
Incorporating temporal lags and time series analyses into future
models may reveal more nuanced impacts of the predictor
variables.

Conclusions

Land-use and land-cover factors were persistent determinants of

fire hotspots across Indonesia over the 4 years of study. This
highlights the importance of preserving forests and peatlands in
relatively pristine states irrespective of climate conditions.
Although ENSO and IOD events can alter the susceptibility to

fires, the prominence of human-related drivers indicates the
importance of land interventions and appropriate policies in
reducing landscape flammability. Given the spread of fires into

areas where there are deep accumulations of peat, interventions
to restore and protect peatlands are likely to assist recovery and
reduce the risk of major biomass burning events. Current mor-

atoria on modifying peatlands for plantation agriculture are
useful in halting concession expansion but are unlikely to reduce
flammability in already-degraded sites or the use of fire in
particular settings. Regulations influencing how peatlands are

used should be accompanied by projects aimed at restoring and
rehabilitating degraded ecosystems and promoting alternative
livelihoods less reliant on drainage and fire. In this context, BRG

holds promise for improving future resilience to fires by
rewetting and revegetating peatlands, so long as the program can
be sustained over the medium to long term. Additional assis-

tance to smallholders in the forms of technical expertise and
financial assistance can provide alternative means of land
preparation based on zero burning. In addition to contributing to

the conservation of biodiversity, reducing the risk of biomass
fires will be a critical part of ensuring the long-term security of
important carbon stores, in the form of tropical forests and
peatlands, and thus mitigating climate change through man-

agement of the global carbon budget.

Data availability statement

The fire hotspot data were obtained fromNASA FIRMS (https://

earthdata.nasa.gov/earth-observation-data/near-real-time/firms/
active-fire-data), aboveground woody biomass data from GEO-
CARBON (https://www.bgc-jena.mpg.de/geodb/projects/Home.

php), south-east Asia land cover data from Centre for Remote
Imaging, Sensing and Processing (https://ormt-crisp.nus.edu.sg/
ormt/Home/Disclaimer), digital elevation data fromConsultative

Group for International Agricultural Research (http://srtm.csi.
cgiar.org/srtmdata/), Hydrological data and maps based on
SHuttle Elevation Derivatives at multiple Scales (HydroSHEDS)
river data from USGS (https://hydrosheds.cr.usgs.gov/datadown-

load.php?reqdata=15rivs), fire weather index data from the global
fire weather database (https://data.giss.nasa.gov/impacts/gfwed/),
accessibility data from the Malaria Atlas Project (https://

malariaatlas.org/research-project/accessibility_to_cities/) and
Joint ResearchCentre of the EuropeanCommission (https://forobs.
jrc.ec.europa.eu/products/gam/download.php), concession data

fromGreenpeace (https://www.greenpeace.org/archive-indonesia/
Global/seasia/Indonesia/Code/Forest-Map/en/data.html), popula-
tion data from Socioeconomic Data and Applications Center

(https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-
density-adjusted-to-2015-unwpp-country-totals-rev11) and for-
est cover loss data from Global Land Analysis and Discovery
(https://glad.umd.edu/dataset/primary-forest-cover-loss-indone-

sia-2000-2012). Peatland distribution data can be purchased
from Wetlands International (http://www.wetlands.or.id/
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