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Forest fire and its key drivers in the tropical forests of 
northern Vietnam 
P. T. TrangA,B, M. E. AndrewA, T. ChuC,D and N. J. EnrightA,*  

ABSTRACT 

Fire increasingly threatens tropical forests in northern Vietnam as climate changes and human 
population grows. Understanding fire occurrence patterns may support more effective forest 
management and reduce fire risk. We investigated spatiotemporal patterns and drivers of wildfire 
across three provinces in northern Vietnam and assessed the effectiveness of the Modified 
Nesterov index (MNI) fire danger rating system. We explored fire occurrence and size within 
and between years and forest types using descriptive analyses and developed spatiotemporal 
Maximum Entropy (Maxent) models incorporating variables representing potential drivers of fire, 
including weather, fuel, topography and human activity. Most fires occurred late in the dry season 
and fires were most common in natural forest. Maxent models successfully predicted fire 
occurrence (area under the receiver operating characteristic curve (AUC) values 0.67–0.79). 
While the contributions of drivers varied among provinces, MNI, temperature, elevation and 
distance to road were consistently important. The model for combined provinces showed that 
fire probability was greater under higher temperature and MNI, in areas with lower population, 
farther from roads, at higher elevations and in natural forests. This study suggests that an 
assessment integrating multiple drivers better predicts fire occurrence than a system based on 
weather alone and may support improved fire management and education in northern Vietnam.  

Keywords: forest fire occurrence, human activity, Maxent, Modified Nesterov index, planta
tion forest, rainforest, topography, weather conditions. 

Introduction 

Increased fire occurrence over recent decades due to global environmental change 
drivers, including climate-change induced drought (Herawati and Santoso 2011;  
Vadrevu et al. 2019) and human population growth (increasing ignitions; Cochrane 
2001), has negatively impacted many tropical forest ecosystems and represents a grow
ing threat to remaining tropical forests (Cochrane 2001, 2003; Corlett 2016; Juárez- 
Orozco et al. 2017). Understanding the occurrence of fire in tropical forests can support 
management practices to reduce fire risk and assist in the development of more effective 
forest conservation. 

Fire is a major cause of disturbance in terrestrial ecosystems globally (Flannigan et al. 
2013), and where fire is recurrent within the lifetime of the dominant lifeforms, ecosys
tems may show a range of adaptations that facilitate system recovery, from seeds stored 
in the plant canopy or soil (Lamont et al. 1991; Enright et al. 2014), or from vegetative 
regrowth (Clarke et al. 2013). However, fires historically have been infrequent in wet 
tropical forests and these systems generally show no in situ adaptations to fire, with 
burned forest recovery largely dependent on recolonisation by propagules from sur
rounding unburned vegetation (Cochrane 2003; Enright 2011). 

Various factors influence fire occurrence, the four most important drivers being 
weather conditions, fuels, topography and ignitions (Bessie and Johnson 1995;  
Bowman et al. 2011; Taylor et al. 2013; Harvey et al. 2016; Parks et al. 2018). 
Wildfires are more likely in hot, dry, windy weather, which makes fuels drier and lowers 
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the energy needed for ignition (Parisien and Moritz 2009). 
Thus, weather conditions are used worldwide to derive 
indices of forest fire danger that estimate fire risk, and 
intensity and rate of spread of a fire if an ignition were to 
occur (Luke and McArthur 1978; Van Wagner 1987; de 
Groot et al. 2007; Su et al. 2021). Fuel conditions are 
another major determinant of fire occurrence (Bradstock 
2010; Ye et al. 2017; McWethy et al. 2018), especially the 
continuity, amount, moisture and flammability of live and 
dead fuels that are available to burn (Moritz et al. 2005;  
Pausas and Keeley 2009). Topography (particularly eleva
tion, slope and aspect) indirectly influences fire occurrence 
and intensity by affecting microclimate, and fuel moisture 
and availability (Birch et al. 2015; Fang et al. 2015; Lee 
et al. 2018). Elevation influences fire occurrence via its 
relationship with temperature, precipitation and prevailing 
wind, which also affects fuel conditions (Camp et al. 1997;  
Bennett et al. 2010). Fuels dry more quickly, more readily 
supporting ignition and spread, on warmer aspects receiving 
higher solar radiation (Skinner 2002; Bennett et al. 2010;  
Nyman et al. 2015), while fire spread is faster on upper 
slopes and steeper slope angles (Viegas and Pita 2004;  
Viegas and Simeoni 2011; Cruz and Alexander 2017). 

Finally, forest fire occurrence is affected by a range of 
human factors. Humans are now the main source of igni
tions, supplanting natural ignitions from lightning, in most 
parts of the world (Goldammer 2007; Lewis et al. 2015;  
Grala et al. 2017). Slash and burn farming is a major 
cause of fires in tropical forests (Stefan and Lindsey 2013), 
with resultant secondary forests more open, drier and with 
increased fuels from slash piles and collateral damage, fur
ther increasing fire susceptibility (Kauffman and Uhl 1990;  
Uhl et al. 1997; Cochrane 2002; Gerwing 2002). Population 
density and the proximity of roads are surrogate measures of 
human impact that also have been found to correlate posi
tively with increased risk of fire (Yang et al. 2007; Kwak 
et al. 2012; Knorr et al. 2014; Matin et al. 2017; Adámek 
et al. 2018). 

Many countries have developed Fire Danger Rating 
Systems (FDRSs) based on daily weather conditions (tem
perature, relative humidity, rainfall, wind speed) plus an 
index of dryness (time since last rain event, estimated soil 
dryness). Other predictors of fire spread and intensity, 
including fuel characteristics and topography, are recog
nised in accompanying documentation, but typically are 
not included in FDRS calculations since their spatiotemporal 
variation is too complex to readily incorporate in a general 
FDRS (Deeming et al. 1977; Luke and McArthur 1978; Van 
Wagner 1987; Tian et al. 2005). Human factors are gener
ally not used in FDRSs (Martínez et al. 2009; Walding et al. 
2018). Most countries derive their FDRS from those of 
Australia, Canada and the USA, with minor modifications 
for local conditions (Tian et al. 2005; Elhag and Boteva 
2021). In Vietnam, however, the Nesterov index has been 
used since the 1980s. This index was developed for the 

boreal forests of the Soviet Union and modified for use in 
Vietnam (Hung 1988). The Modified Nesterov index (MNI) 
is a fairly simple FDRS based on the vapour pressure deficit 
(calculated from current day’s temperature and relative 
humidity) and number of preceding days with <5 mm 
rain (Hung 1988; Tian et al. 2005; Vien 2014; Quy et al. 
2017, and see Methods section below for further details). 

To support and improve the temporal and spatial predic
tion of fires, numerous studies have investigated the effects 
of fire drivers for non-tropical forest ecosystems around the 
world (Alvarado et al. 2017; Lee et al. 2018; Zhang and 
Lim 2019). However, in tropical forest regions of south-east 
Asia, such as Vietnam, a comprehensive understanding 
of the factors affecting fire occurrence remains limited. 
The northern mountains region of Vietnam has large 
areas of tropical forest over complex terrain with diverse 
topographic and environmental conditions (Averyanov 
et al. 2003), an expanding plantation forest estate of highly 
flammable taxa including Eucalyptus, Pinus and bamboo 
(Phuong et al. 2012; Doanh and Bao 2014), and is reported 
as increasingly impacted by fire over recent decades 
(Le et al. 2014; Vadrevu et al. 2019; Forest Protection 
Department 2020). This region is well-suited for examining 
how fire drivers interact to influence fire occurrence in 
tropical forests. Here, we address the following questions: 
(1) what are the spatial and temporal patterns of forest fire 
occurrence in northern Vietnam; and (2) what are the key 
driving factors (weather, fuel, topography and anthropo
genic) of fire occurrence? Insights obtained from this 
research will identify how effective the MNI is as an FDRS 
for this region and what other drivers of fire, if any, might 
be taken into account to better understand the occurrence 
and distribution of fires in northern Vietnam forests. Results 
of this study will enhance our understanding of fire drivers 
and facilitate better fire management in the tropical forests 
in northern Vietnam, and comparable tropical regions 
elsewhere. 

Materials and methods 

Study area 

The study area covers three provinces in north-western 
Vietnam: Lao Cai, Dien Bien and Son La (Fig. 1), with an 
area of ~30 000 km2 (General Statistics Office of Vietnam 
2011). The region has a monsoon tropical climate with cold, 
dry winters and warm, wet summers. The winter drought 
period of 2–5 months extends from November to March. 
Average annual temperatures range between 20 and 23°C, 
with maximum daily temperatures from 37 to 41°C, and 
minimum temperatures between −4 and −2°C. Annual 
precipitation across north-western Vietnam ranges from 
1700 to 2400 mm, with highest rainfall in July–August 
(Van 2015). Mean annual relative humidity ranges from 
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80 to 87%, and the region has approximately 12 days of 
frosts, and 40 days of foehn winds (dry and hot winds from 
the west) each year (Van 2015). Areas above 1400 m have a 
montane monsoon tropical climate (Averyanov et al. 2003), 
with later peak rainfall and a less extreme dry season. 

We selected the three provinces based on number of fires 
available for analysis and climate. Dien Bien and Son La 
experience a monsoon tropical climate and had a high num
ber of fires per year, while Lao Cai has a tropical montane 
monsoonal climate and had fewer fires. These provinces 
have tropical forest cover of >50% over diverse terrain 
(Ministry of Agriculture and Rural Development 2016). 
Forests of the region are of biodiversity importance and 
are protected by a national park (Hoang Lien, in Lao Cai) 
and seven nature reserves. 

Fire dataset 

We used the Global Fire Atlas dataset (Andela et al. 2019), 
which was developed from the Moderate Resolution 
Imaging Spectroradiometer (MODIS) burned area product 
(500-m resolution), to delineate and characterise individual 

fires over the period 2003–2016 inclusive. The Global Fire 
Atlas detects fires above a minimum size of 21 ha, given the 
resolution of the MODIS data it is based on (Andela et al. 
2019). We used the locations and dates of the estimated 
ignition point of each fire in our analyses. Fires outside the 
study area or occurring in non-forested areas based on the 
forest map of Vietnam (Ministry of Agriculture and Rural 
Development 2009, 2016) were excluded; 5753 forest fires 
were included in the analyses (Dien Bien, n = 2905; Lao 
Cai, n = 272; Son La, n = 2576). 

Explanatory variables 

To understand the factors influencing fire occurrence, expla
natory variables were assembled for four variable groups: 
weather, topography, fuel condition and human activity 
(Table 1). All spatial processing of datasets was conducted 
in ArcGIS (ESRI, Redlands, CA, USA). 

Weather 

Meteorological variables, including daily measurements 
of temperature, relative humidity, wind speed and 

Legend

Forest Fire

Province Boundary

Name: GCS WGS 1984
Datum: D WGS 1984
Spheroid: WGS 1984

Geographic Coordinate Systems

Fig. 1. The study region in northern Vietnam and forest fire occurrence (red dots) in the three selected provinces over the 
period 2003–2016 inclusive.   
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precipitation (Table 1), were obtained from the 11 weather 
stations within the study area for 2003–2016 (Vietnam 
Meteorological and Hydrological Administration 2003– 
2016). We also calculated the MNI (Eqn 1) (Hung 1988;  
Chau 2012a; Doanh and Quynh 2014; Quy et al. 2017) as a 
composite variable: 

K t dMNI = ×i
i

n
i i

=1
(1)  

where K = 1 if daily precipitation <5 mm, K = 0 if daily 
precipitation ≥5 mm, n is the number of consecutive days 
with daily precipitation <5 mm and di is the air vapour 
pressure deficit, which is estimated from temperature (ti) 

and relative humidity (RHi) on day i (Hung 1988) 
(Eqn 2) as: 

d
RH

=
× (1 – )

100i
t i

e
( + 270)

ti ti

i

77.345+0.0057×( +273) 7235
+273

8.2
(2)   

Topography 

We included three topographic variables: elevation, aspect 
and slope, generated using forest inventory maps of the  
Ministry of Agriculture and Rural Development (2016). 
The elevation layer of those maps (30-m resolution) was 

Table 1. Variables analysed to explain forest fire occurrence in northern Vietnam, including their description, source or reference for the 
primary data used and spatial data model.       

Variables Variable code Description Source or reference Data model   

Weather  

Temperature Temp Temperature for a given day at 1300 hours (°C)  Vietnam Meteorological and 
Hydrological Administration 
(2003–2016)   Rainfall Rain Rainfall for a given day (mm)  

Relative humidity RH Relative humidity at 1300 hours for a given 
day (%)  

Wind speed wind_speed Wind speed at 1300 hours for a given day 
(km h–1)  

Modified Nesterov 
index 

Nesterov_ index Modified Nesterov index of a given day  Hung (1988) and  Chau (2012a) 

Fuel condition  

EVI_ Amplitude EVI2 Two-band Enhanced Vegetation Index (EVI2), 
Segment maximum – minimum EVI2 for a given 
vegetation growing cycle  

Gray et al. (2019) https://lpdaac. 
usgs.gov/products/mcd12q2v006 

Raster/500 m  

Vegetation type Vege_ type_code   Ministry of Agriculture and Rural 
Development (2009,  2016) 

Polygon/ 
1:100 000  

Natural forest 1 Primary and secondary natural forests    

Plantation forest 2 Forests including planted species    

Mixed forest 3 Natural forests including bamboo and/or pine 
species    

Bamboo forest 4 Forests including only natural bamboo species   

Topography  

Elevation Elevation Elevation (m)  Ministry of Agriculture and Rural 
Development (2016) 

Raster/30 m  

Slope Slope Slope angle (°)  

Aspect Southwestness Southwestness is a cosine-transformation of 
aspect that ranges from −1 (northeast) to 1 
(southwest) 

Human activity  

Population density Population People per km2 https://sedac.ciesin.columbia.edu/ 
data/set/gpw-v4-population-density- 
rev11 

Raster/1 km  

Distance to 
nearest road 

Road Distance from forest fire occurrence or 
background point to the nearest road (m)  

Ministry of Agriculture and Rural 
Development (2016) 

Polyline/ 
1:100 000   

P. T. Trang et al.                                                                                                               International Journal of Wildland Fire 

216 

https://lpdaac.usgs.gov/products/mcd12q2v006
https://lpdaac.usgs.gov/products/mcd12q2v006
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11


derived from the Shuttle Radar Topography Mission dataset 
(Rabus et al. 2003; Mota et al. 2019; Hung et al. 2021). This 
was scaled to the 500-m resolution of the MODIS fire data 
using nearest-neighbour resampling, and then used for cal
culating the slope and aspect. The aspect (α, in degrees) was 
converted into a southwestness index (Eqn 3): 

Southwestness = 1 × cos(radians( 45)) (3)  

Southwestness has values between −1 and 1, indicating the 
degree to which a slope faces southwest, receiving the great
est potential insolation (Franklin et al. 2000; Khatchikian 
et al. 2011). 

Fuel condition 

A remotely sensed vegetation index was used as a proxy for 
fuel abundance prior to the fire. Among vegetation indices 
calculated from satellite imagery, the Enhanced Vegetation 
Index (EVI) was developed to have improved sensitivity in 
high-biomass regions (Huete et al. 1994; Huete 1997) and 
has been found to be better correlated with fuel moisture 
and fuel load than other vegetation indices (Roberts et al. 
2006; Myoung et al. 2018). This index has been updated 
with the two-band EVI (EVI2), which is less susceptible to 
saturation with biomass (Jiang et al. 2008; Liu et al. 2012;  
Shang et al. 2014) and has been used as an indicator of fuel 
condition favouring fire occurrence (Burapapol and 
Nagasawa 2016). 

In this study, we used estimates of EVI2 summarised over 
the year before fire occurrence from the MODIS Land Cover 
Dynamics Product, which estimates characteristics of the 
EVI2 time series for annual and sub-annual growing cycles 
(MCD12Q2 Collection 6; (Gray et al. 2019)). The range of 
EVI2 values in a given growing cycle was used as an index of 
the new production of leaves in the year before fire, and 
thus the availability of fuel to the fire. 

We included the vegetation type where each fire occurred 
as an additional variable, based on the forest inventory map 
(Ministry of Agriculture and Rural Development 2016). 
Forest types were aggregated into four categories 
(Table 1): closed canopy natural forest including primary 
and secondary forests (covering 41% of the study area), 
plantation forest (4%), mixed forest (6%) and bamboo 
forest (1%). 

Human activity 

Two variables, population density and distance to nearest 
road, represented human activity (Table 1). Population den
sity has been correlated positively with potential forest fire 
occurrence elsewhere (Kwak et al. 2012; Matin et al. 2017;  
Ma et al. 2020) with human activities now responsible for 
most fires (de Vasconcelos et al. 2013), while roads may act 
as fire-breaks, and allow improved access for fire suppression 
but also a source of additional ignitions (Renard et al. 2012). 

Gridded population estimates were extracted from the gridded 
population of the world dataset (Center for International 
Earth Science Information Network Columbia University 
2016), which provided estimated population count and 
density at approximately 1-km resolution. The road map 
was extracted from the digital map of the Ministry of 
Agriculture and Rural Development (2016), from which a 
raster distance surface was calculated at 500-m resolution. 

Statistical approach 

We first conducted descriptive analyses of fire occurrence, 
exploring intra- and inter-annual patterns in the number of 
fires and their relationships to weather variables. We used 
logistic regression to test univariate effects of the predictor 
variables on fire occurrence. In addition, we evaluated if fire 
activity differed between forest types using chi-squared 
analyses of the number of fires, and inspection of the fire 
size distributions to evaluate differences in burned area. Fire 
size distributions were skewed to small fires and not well 
described by typical statistical summaries (e.g. mean). 
Therefore, a power law distribution was fitted to the 
observed fire sizes by maximum likelihood using R code 
found in Clauset et al. (2009) and the exponent of the 
power law distribution was used to compare the distribution 
of fire size between forest types. 

Multivariate Maximum Entropy (Maxent) models were 
then developed to predict the occurrence of fires and assess 
the relative importance of the explanatory variables 
(Table 1). Models were developed using the Maxent soft
ware (version 3.4.1, Phillips et al. 2020) and were con
structed for each province individually and for all three 
provinces combined. Maxent (Phillips et al. 2006) is one 
of the best-performing approaches to predict species distri
butions in ecological studies (Elith et al. 2006). However, it 
can be applied to predict the spatial distribution of any 
phenomenon (e.g. fire: Parisien and Moritz (2009)), or to 
predict distributions across space and time in response to 
dynamic environmental conditions (e.g. species: Andrew 
and Fox (2020); Stoetzel et al. (2020); fire: Chen et al. 
(2015)). To do so, Maxent fits the relationships between 
the modelling target, e.g. fire, and the explanatory variables 
and projects these across geographic space and/or time. 
Thus, it can be used to evaluate the effect and the impor
tance of each predictor variable on the occurrence of fire. 

Maxent requires samples of fire occurrences and back
ground points to predict fire occurrence. Fire occurrences 
were represented with the ignition points from the Global 
Fire Atlas dataset. The background points were a random 
sample of 8630 points (~1.5 × the number of fire points) 
within the forested portion of the study area, generated 
within ArcGIS. Background sample sizes by province were 
2416, 2244 and 3970 for Dien Bien, Lao Cai and Son La, 
respectively, and these were aggregated for the combined 
provinces model. Each background point was assigned a 
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date randomly sampled from the dates of the fires. Values 
for explanatory variables were assigned to each fire and 
background point based on their location, year (EVI2) and 
date (weather variables) of occurrence. Because the weather 
dataset did not have continuous spatial coverage, points 
were assigned observations of daily weather variables 
from the nearest weather station. Correlations between 
explanatory variables were low for the sample of points 
(all Spearman r < 0.75); thus, all variables were included 
in the model (Siljander 2009). 

Maxent was run in ‘samples with data’ mode using 
default settings for the maximum number of iterations 
(500) and convergence threshold (0.00001), which are 
used to determine when to stop iteratively fitting the 
model. Fire points were randomly subsampled, with 75% 
for training and the remaining 25% for testing. This was 
repeated 15 times, with the results of the replicates aver
aged. Model performance was assessed on the test set using 
the area under the receiver operating characteristic curve 
(AUC; Fielding and Bell 1997; Elith et al. 2006). AUC ranges 
from 0 to 1, with values >0.7 generally indicating reason
able performance, and a value of 0.5 indicating performance 
no better than random (Elith 2000; Elith et al. 2006). 

To limit model complexity, the regularisation multiplier 
was set at 2, 4, 2 and 2 for the models of Dien Bien, Lao Cai, 
Son La and combined provinces, respectively. These values 
were selected by comparing model performance when eval
uated on the training and test datasets (Supplementary 
Table S1); a large reduction from training to test AUC 
suggests that the model is too complex and is overfitted to 
the training data. Lao Cai, which had the fewest fire occur
rences, supported the lowest model complexity. Default 
feature types (linear, quadratic, product and hinge features) 
were allowed to the model, to give it flexibility to fit a 
variety of functional forms of the relationship between the 
predictor variables and the occurrence of fire. Although the 
hinge feature type can sometimes result in overfitted models 
that identify unrealistic relationships, this was effectively 
mitigated by limiting the complexity of the models with the 
regularisation multipliers described above. 

The importance of each variable to predicting fire occur
rence was determined by randomly permuting the values of 
that variable among the training points (both presence and 
background) and measuring the resulting decrease in train
ing AUC, normalised to percentages (Phillips 2005). A large 
reduction indicates that the model depends strongly on that 
variable. Marginal response curves were also produced to 
illustrate the relationship between the probability of fire 
occurrence and each environmental variable when control
ling for all other variables. 

The spatial predictions of the individual-province Maxent 
models were mapped for three illustrative days with high 
(MNI > 2500), moderate (1000 < MNI < 2500) and 
low (MNI < 1000) fire danger in each province. All 
spatial variables were aligned to 500-m resolution using 

nearest-neighbour resampling. Weather data were spatia
lised by delineating a Thiessen polygon tessellation around 
the weather stations, assigning each polygon the daily 
weather measurements from the weather station it contains, 
and rasterising these values to the analysis resolution. This 
corresponds to assigning each pixel the observations from 
the nearest weather station, consistent with how fire and 
background points were attributed with weather data for 
model development. 

Results 

Forest fire occurrence varied markedly over 2003–2016, 
being highest in 2007 (826 fires), and lowest in 2008 and 
2011 (57 and 67 fires, respectively) (Fig. 2a). Almost all 
fires occurred in the dry season, especially February–April, 
when MNI was higher and humidity, temperature and rain
fall were lower, than in months with fewer fires (Fig. 2b). 
There were generally few fires per day, but there was a 
tendency for more fires to burn on days with higher MNI 
values (linear regression: R2 = 0.15, P < 0.05; Fig. 3). 

Most fires (nearly 5000; 85%) occurred in natural forest, 
followed by mixed forest. Fire was infrequent in plantation 
and bamboo forests, with fewer than 100 fires each 
(Table 2). Fires were more frequent in natural forest than 
expected given the area occupied by this forest type 
(Chi-squared P < 0.05), except in Son La where fires were 
relatively more frequent in mixed forests (Table 2). Fire was 
much less frequent than expected in plantation forest in all 
provinces, and in bamboo forests in Dien Bien and Lao Cai 
(Table 2). 

Most fires were small (average size 111 ha). Average fire 
size was lowest for bamboo forest (48 ha) and highest for 
plantation forest (141 ha); the largest fire occurred in mixed 
forest (11 900 ha). Fire sizes followed a power law distribu
tion in all forest types (Kolmogorov–Smirnov P > 0.05;  
Fig. 4). The decline in the cumulative abundance of fires 
with increasing fire size was steepest for bamboo forest, 
indicating a greater dominance of small fires (power 
law exponent γ = 4.02), and most gradual for plantation 
forest, indicating a greater proportion of larger fires (γ = 
1.73) (Fig. 4). 

Maxent models 

Maxent models generally performed well at predicting the 
occurrence of fire in space and time based on weather, 
topography, vegetation and anthropogenic variables, with 
AUC values of 0.7, 0.67, 0.79 and 0.73 for the combined 
provinces, Dien Bien, Lao Cai, and Son La models, 
respectively. 

The relative contributions of explanatory variables dif
fered between provinces (Table 3). In Dien Bien, variable 
importance was reasonably balanced between the top 
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variables; elevation was most important, followed by popu
lation, temperature, MNI and vegetation type. In Lao Cai, 
elevation was again the strongest driver, with 2–3 times 
greater importance than MNI, distance to road and relative 
humidity. In Son La, distance to road was the only important 
driver of fire. The combined provinces model integrated 
these patterns, finding similar importance of temperature, 
distance to road, elevation and MNI (Table 3). The remain
ing variables were never important for predicting fire occur
rence (Table 3). 

Generally, fire was related positively to temperature, 
MNI, elevation and slope, and negatively to relative humid
ity and population density in the univariate analyses 
(Supplementary Table S2). However, Maxent models found 
plateauing effects of MNI, and peaked effects of elevation 
(unimodal at mid-elevations) in Dien Bien and combined 
provinces (Fig. 5). Distance to road had mixed effects on fire 
occurrence, being negative in Lao Cai, and peaked in Son La 
and the combined provinces model (Fig. 5). 

Mapped predictions of forest fire occurrence on selected 
days with contrasting MNI from the individual-province 
models reveal that the locations of high fire risk vary 
temporally (Fig. 6, Supplementary Table S3). Between 

provinces, the probability of fire was lowest in Lao Cai, 
especially on the days with medium and high MNI; it was 
low everywhere on the day with low MNI (Fig. 6c). On the 
day with high MNI, moderate fire risk was widespread 
throughout Dien Bien and Son La, with scattered patches 
of high predicted fire risk in central Lao Cai and Son La 
(Fig. 6a). On the medium MNI day, areas with moderate fire 
risk in Dien Bien contracted to the west and were more 
restricted topographically; in Son La, fire risk was more 
heterogeneously distributed than on the high MNI day, 
with prominent patches of especially high fire risk in the 
centre of the province related to low elevation and high 
population density; fire risk was evenly low across Lao Cai 
(Fig. 6b). 

Discussion 

Occurrence of forest fire in northern Vietnam 

Most forest fires in northern Vietnam during 2003–2016 
occurred in the late dry season (February–March) and the 
first month of the wet season (April), with 50% of all forest 

Table 2. Chi-squared (χ2) tests for the relationship between frequency of fire occurrence (No. of fires, % fires) and area occupied by each 
vegetation type (% area), for individual and combined provinces, northern Vietnam.          

Province χ2 d.f. P Forest type No. 
of fires 

% fires % area   

Combined 
provinces 

423.2 3 <2.2 × 10−16 Natural forest  4928  85.7  77.9 

Plantation forest  97  1.7  9.9 

Mixed forest  667  11.6  9.7 

Bamboo forest  61  1.1  2.5 

Total  5753  100  100 

Dien Bien 371.2 3 <2.2 × 10−16 Natural forest  2786  95.9  79.2 

Plantation forest  38  1.3  9.0 

Mixed forest  80  2.8  9.6 

Bamboo forest  1  0.0  2.2 

Total  2905  100  100 

Lao Cai 30.4 3 1.1 × 10−16 Natural forest  250  91.9  77.6 

Plantation forest  9  3.3  10.2 

Mixed forest  11  4.0  9.5 

Bamboo forest  2  0.7  2.7 

Total  272  100  100 

Son La 317.7 3 <2.2 × 10−16 Natural forest  1892  73.4  77.3 

Plantation forest  50  1.9  10.2 

Mixed forest  576  22.4  10.0 

Bamboo forest  58  2.3  2.5 

Total  2576  100  100   
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fires in March alone. During this time, temperatures are cool 
(average temperature 21°C) but low rainfall over the pre
ceding months and low humidity lead to higher daily 
MNI than at other times of year (Vietnam Meteorological 
and Hydrological Administration 2003–2016) (Fig. 2b). 
Although the dry season starts in November, the 2-month 
lag before most forest fires occur is likely due to fuel condi
tion, with live and dead vegetation still containing high 
levels of moisture early in the dry season. The abundance 
of fires in April may also be related to fuel moisture and 
rainfall, with fuels at their driest before the onset of the new 
wet season, which varies between years. In any given year, 
part of April may provide similar fire conditions to March. 
In our study period, wet season onset (defined as the first 
day receiving >5 mm rain) was generally in the first week 
of April, but average daily rainfall on onset dates and 
throughout April was low (<7 mm). 

Fire occurrence also varied among years (Fig. 2a), likely 
owing to inter-annual climate variability. The greatest fire 
activity occurred following an El Niño event from 
September 2006 to January 2007 that resulted in warm, 
dry conditions in northern Vietnam; the 2007 dry season 
was warmer, received less rainfall and had lower humidity 
than the 2003–2016 average. La Niña events impacted 
northern Vietnam from August 2007 to June 2008 and 

mid-2010 to May 2011, resulting in colder, wetter condi
tions (Boening et al. 2012; Gobin et al. 2016) and low fire 
activity (Fig. 2a). The La Niña dry season in 2008 was 
colder, received more rainfall, and humidity was higher 
relative to 2003–2016 averages (Vietnam Meteorological 
and Hydrological Administration 2003–2016). 

Fire frequency was higher than expected in natural forest 
given the proportion of land area (77.9% of total land area 
vs 85.7% of total fires) and was lower than expected in 
plantation (9.9% area vs 1.7% fires) and bamboo forests 
(2.5% area vs 1.1% fires; Table 2) over the study period 
(Ministry of Agriculture and Rural Development 2016). 
Most plantation and bamboo forests occur near villages, 
and at lower elevations (Sam et al. 2000; Nghia 2006;  
FAO 2009; Cochard et al. 2017; Cuong et al. 2020). They 
are often actively protected from fire, with fuel loads 
reduced through weeding, collection of fuelwood 
(Nambiar et al. 2015) and regular harvesting in the case of 
bamboo forest (Nghia 2006; Lobovikov et al. 2007; Trang 
and Hoi 2009). Additionally, bamboo forests tend to occur 
in moist locations with low fire risk, such as in valleys 
and along river banks in lowland moist tropical forests or 
lower montane forests (e.g. Bambusa, Dendrocalamus, 
Gigantochloa, Schizostachyum) (Soderstrom and Calderón 
1979; Judziewicz et al. 1999; Nghia 2006) or in higher 

1.00 Natural forest

γ = 2.85

KS = 0.06

P = 0.09C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n

0.50

0.20

0.10

0.05

0.02

20 50 100 200 500 1000

Burned area (ha)

2000 5000 10 000

1.00 Mixed forest

γ = 2.61

KS = 0.07

P = 0.83C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n

0.50

0.20

0.10

0.05

0.02

20 50 100 200 500 1000

Burned area (ha)

2000 5000 10 000

1.00 Plantation forest

γ = 2.85

KS = 0.06

P = 0.09C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n

0.50

0.20

0.10

0.05

0.02

20 50 100 200 500 1000

Burned area (ha)

2000 5000 10 000

1.00 Bamboo forest

γ = 2.61

KS = 0.07

P = 0.83C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n

0.50

0.20

0.10

0.05

0.02

20 50 100 200 500 1000

Burned area (ha)

2000 5000 10 000

Fig. 4. Power law distributions of fire size by forest type in Dien Bien, Lao Cai and Son La province, northern Vietnam, 
from 2003 to 2016 inclusive (γ: exponent, KS: Kolmogorov–Smirnov test, P: P value).   

www.publish.csiro.au/wf                                                                                                      International Journal of Wildland Fire 

221 

https://www.publish.csiro.au/wf


montane systems with high precipitation and humidity 
(e.g. Chimonobambusa, Indosasa, Arundinaria) (Soderstrom 
and Calderón 1979; Judziewicz and Clark 2007; Clark et al. 
2015; Yakubu et al. 2015). 

The fire size distributions give greater understanding of 
differences in flammability and management between forest 
types. Higher values of the exponent of the power law distri
bution correspond to increasing dominance by small fires, 
with values of 2 used as a threshold between disturbance 
regimes characterised by diffuse, small events, such as 
observed here for natural forests, and larger disturbances 
(Fisher et al. 2008). However, although fire was less frequent 
in plantation forests, fires were larger and followed a differ
ent size distribution (exponent γ < 2) that may be due to 
different stand attributes and management regimes. The 
dominant plantation species (e.g. Pinus, Eucalyptus) are 
highly flammable owing to high content of essential oils 
(Peña-Fernández and Valenzuela-Palma 2005; Hirschberger 
2016; Tumino et al. 2019). Also, these forest types typically 
have a more open canopy layer than rainforests, leading to 
lower relative humidity, higher understorey density 
(Lemenih et al. 2004), and increased surface fuel load and 
dryness (Jimu and Nyakudya 2018), creating favourable 

conditions for fire (Pauchard et al. 2008). In all other forest 
types, fires tended to be small (γ > 2). Fires in bamboo 
forests were most extremely skewed to small sizes (γ = 4.02), 
underscoring their low flammability habitat circumstances 
(Fig. 4). 

Drivers of forest fire in northern Vietnam 

Identifying the driving factors and understanding their con
tributions to fire occurrence are essential for forest fire 
management (Avila-Flores et al. 2010). Our Maxent models 
found that all groups of variables tested – weather, topogra
phy, fuel condition and anthropogenic factors – could have a 
strong influence on forest fire occurrence in northern 
Vietnam, but their contribution varied among provinces. 
MNI, temperature, elevation and distance to road were con
sistently important in explaining forest fire occurrence, while 
other variables were only occasionally (population, relative 
humidity, vegetation type) or never important (daily rainfall, 
wind speed, EVI2, slope, aspect). This is consistent with 
other recent studies of tropical and sub-tropical forest fire 
occurrence, which found meteorological (especially temper
ature) and human drivers to be most important (Guo et al. 
2017; Su et al. 2019; Su et al. 2021). The low individual 
importance of rainfall and relative humidity in our models is 
likely because they are already, and more effectively, quan
tified within the MNI fire danger rating measure, and 
because they have low variance during the dry season period 
when nearly all fires occur. However, temperature shows a 
strong effect separate from its contribution in the MNI, 
which may be worthy of further exploration in terms of 
potential future refinements of this FDRS index. 

For combined provinces, weather conditions, especially 
temperature and MNI, were collectively much more impor
tant than other factors in explaining fire occurrence. This 
suggests weather is the most important driver over larger 
regional scales, consistent with previous work (Schulte et al. 
2005; Parisien and Moritz 2009; Viganó et al. 2018), espe
cially Renard et al. (2012) who contrasted regional and local 
models of fire occurrence in the Western Ghats, India. 
Weather was also slightly more important in Dien Bien, 
where drivers of fire occurrence were reasonably balanced 
between weather, topography and anthropogenic factors. 
Dien Bien is hotter than the other provinces owing to the 
stronger presence of hot, dry foehn winds (Vietnam 
Meteorological and Hydrological Administration 2003– 
2016; Van 2015). We found fire to be associated with higher 
MNI and temperatures in both of these models (Fig. 5), as 
expected from their impacts on fuel moisture (Fried et al. 
2008; Sullivan et al. 2012; Chang et al. 2013; Corlett 2016;  
Holsinger et al. 2016). 

In Lao Cai, topography was the dominant driver of fire 
occurrence, with secondary influences of weather. Lao Cai is 
the most mountainous of the provinces studied, with moun
tain ranges exceeding 2000 m including Vietnam’s highest 

Table 3. The permutation importance of explanatory variables to 
the best fit Maxent model for each province and for combined 
provinces, northern Vietnam. The summed importance of all 
variables within each variable group is also presented (bold italics).       

Variable Dien 
Bien 

Lao Cai Son La Combined 
provinces   

Weather 
condition  

34.5  38  13.4  47.7 

Modified 
Nesterov index  

14.5  17.3  7.1  14.4 

Temperature  19  3.1  5.8  26.1 

Rainfall  0.2  0.1  0  0.2 

Relative 
humidity  

0.7  12.3  0.2  2.4 

Wind speed  0.1  5.2  0.3  4.6 

Fuel   13.2  0.9  5.6  6.9 

Vegetation type  12.1  0.6  2.9  6.4 

EVI2  1.1  0.3  2.7  0.5 

Topography  25.6  45.3  4.9  18.1 

Elevation  25.4  42.1  4.6  17.7 

Slope  0.2  0.8  0  0.1 

Southwestness  0  2.4  0.3  0.3 

Anthropogenic  26.7  15.7  76.1  27.3 

Population  20.5  2.6  0.2  7.1 

Distance to 
nearest road  

6.2  13.1  75.9  20.2   
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peak (Fansipan, 3143 m), steep slopes, strongly fragmented 
terrain and a strong gradient between mountain and low
land areas (Lao Cai Provincial Working Group 2002). 
Elevation was the only important topographic variable in 
explaining fire occurrence (Table 3), and it was one of the 
most consistently important variables of any category, 
although its effect differed between provinces. Most forest 
fires occurred at 500–1500 m elevation in Dien Bien and the 
study area as a whole (Fig. 5), where most natural forests 
with greater continuous extent are located (Averyanov et al. 
2003; Phuong et al. 2012; Ministry of Agriculture and Rural 
Development 2016). In contrast, in Lao Cai, natural forest 
area and fire occurrence (Fig. 5) both increased with eleva
tion. However, because our background was sampled from 
forested areas, associations of fire with elevation cannot be 
explained by the elevation distribution of forest alone. 
Elevation influences all proximate fire drivers, with effects 

on vegetation composition, water availability, fuel condition 
(Castro and Chuvieco 1998) and weather (McCutchan and 
Fox 1986). Other studies in the tropics have also found 
increased fire occurrence at higher elevation, most likely 
due to increased solar radiation and lightning incidence 
(de Bem et al. 2019; Su et al. 2021). 

In Son La, anthropogenic factors were the strongest drivers 
of fire occurrence, especially distance to road (Table 3). 
Son La has approximately twice the population of the other 
provinces (General Statistics office of Vietnam 2019). We 
found divergent associations of fire with roads between prov
inces, with fires more likely beyond 5 km from roads in Son 
La, but within 5 km of roads for Lao Cai. The combined 
provinces model synthesised these patterns, finding a unim
odal response to road distance. Most human activities causing 
forest fires in Vietnam result from slash and burn farming, 
use of fire for hunting and trapping wildlife and harvesting 
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honey, and activities related to use of forest products, e.g. 
cooking and smoking (Hoang 2007; Vien 2014). These activ
ities are often undertaken in natural forests away from towns 
and villages, but require access, such as by roads. However, 
roads can be fire breaks and provide access for fire detection 
and suppression (Renard et al. 2012). Our findings support 
the occurrence of fires away from populated areas (in Dien 
Bien) and the diverse mechanisms relating fire to roads. In 
Son La, which had more fires than Lao Cai and greater 
importance of roads, fires tended not to occur along roads, 
suggesting fire suppression in accessible locations. This inter
pretation is supported by previous studies in Asia that have 
found fires to be more likely farther from roads (Chang et al. 
2013; Sumarga 2017). 

Fire danger rating systems 

In Vietnam, the Nesterov index, modified for local condi
tions, has been used since the 1980s to indicate forest fire 
danger. MNI is based on weather conditions only, and does 
not include other factors impacting fire occurrence and 
spread such as fuel condition, topography and ignition 
sources (Chau 2012b; Doanh and Bao 2014; Vien 2014;  
Hoan 2018). Use of the MNI is consistent with most widely 
used FDRSs elsewhere, such as the Canadian Forest FDRS 
(Van Wagner 1987; Taylor and Alexander 2006), the 
National FDRS of the USA (Deeming et al. 1977) and the 
Forest Fire Danger Index of Australia (Noble et al. 1980). 
However, although these systems only explicitly include 
weather conditions, the effects of additional factors such 
as fuel condition and slope are incorporated into fire beha
viour prediction and fire management planning. 

Our findings suggest that the MNI is a useful measure for 
predicting fire danger conditions for forest areas in northern 
Vietnam but that incorporation of other variables, including 
anthropogenic, fuel and topographic factors provides a bet
ter overall model for predicting forest fire occurrence 
(Supplementary Fig. S1 shows jackknife measures of varia
ble importance comparing the performance of full models 
with those using e.g. only MNI). Therefore, this study rec
ommends that important factors beyond weather should be 
considered to improve the prediction of, response to and 
education about forest fire occurrence in Vietnam. 
Topographic and anthropogenic variables were also impor
tant and can be obtained easily from digital elevation maps 
or proxied by remotely sensed data to augment the current 
FDRS. Fuel conditions are also known to be important, but 
the fuel variables used in this study showed low importance 
in all models, possibly because they are indirectly related to 
the fuel characteristics important to fire occurrence and 
spread and are not measured at the spatial or temporal 
scales most relevant to their effects on fire, or because fuel 
load is not a critical driver of fire in these forests (with all 
forested areas likely to have sufficient fuel to carry a fire if 
other conditions are conducive to fire occurrence). 

Conclusion 

This study provides an improved understanding of patterns 
of wildfire occurrence in the forests of northern Vietnam 
through a range of descriptive and quantitative analyses. 
Generally, the most fire-prone period was the mid-dry sea
son to onset of the wet season, corresponding to 
February–April. Forest fires occurred mostly in natural for
est while they rarely occurred, but tended to be larger, in 
plantation forests. 

Maxent models showed good performance in explaining 
fire occurrence and identifying its drivers, including 
weather conditions, fuel, anthropogenic and topographic 
variables, but found the relative importance of these drivers 
depended on extent (local vs regional) and the position of 
each province on these gradients. The findings of these 
models, including the mapped results, can assist managers 
and decision-makers to build forest fire management plans 
adjusted to each province’s fire conditions. For instance, 
forest fire managers and authorities can prioritise areas 
close to roads at high elevation in Lao Cai, mid-elevation 
areas with low population density in Dien Bien, and forests 
distant from roads in Son La for efficient prevention mea
sures to reduce forest fire risk on days with high and mod
erate MNI in the late dry season to early wet season. Results 
from our study show that while MNI is a significant predic
tor of high fire danger days, spatial (Maxent) model analyses 
provide additional understanding of where fire danger is 
highest on such high-MNI days. We recommend that this 
improved understanding of fire occurrence be used to guide 
education about fire and planning for fire mitigation and 
suppression in Vietnam. 

This study has developed statistical models of fire occur
rence that may support improved management in tropical 
forests in Vietnam and other countries with comparable 
climate and vegetation. However, further research is needed 
to assess other aspects of fire regimes such as fire size, 
severity and impacts, and social factors influencing igni
tions, as well as the effectiveness of fire prevention strate
gies to support forest fire management in Vietnam. 

Supplementary material 

Supplementary material is available online. 
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