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ABSTRACT 

This study presents two new remote sensing approaches that can be used to derive rate of 
spread and flaming zone velocities of a wildfire at very high spatiotemporal resolution. Time 
sequential image tracking from thermal or visible video collected on uncrewed aerial vehicles is 
used to estimate instantaneous spatial rate of spread of a surface fire. The techniques were 
developed using experimental wheat‐stubble burns carried out near Darfield, New Zealand, in 
March 2019. The thermal tracking technique is based on Thermal Image Velocimetry, which 
tracks evolving temperature patterns within an infrared video. The visible tracking technique uses 
colour thresholding, and tracks fire perimeter progression through time at pixel resolution. 
Results show that the visible perimeter tracking creates a higher mean rate of spread compared 
to thermal image velocimetry. The visible perimeter tracking provides rate of spread measure-
ments for fire front progression whereas the thermal tracking techniqueis computationally more 
expensive, but can resolve velocities of thermal structures within the flaming zone and provides 
spatiotemporal rate of spread measurements. Both techniques are available as open‐source code 
and providevital scientific data for new studies concerning e.g. fire–atmospheric interactions or 
model validation. They may be adapted for operational purposes providing rate of spread at high 
spatiotemporal resolution.  

Keywords: Adaptive thermal image velocimetry, fire rate of spread, image velocimetry, 
perimeter tracking, ROS, thermal imagery, uncrewed aerial vehicles, wildfire. 

Introduction 

Wildfires have become an increasing global problem over the last two decades, causing 
severe damage to human infrastructure and the environment and resulting in rising 
numbers of evacuations (Beverly and Bothwell 2011; Zhuang et al. 2017; McCaffrey 
et al. 2018; McNamee et al. 2019; Wong et al. 2020). Shrub and grass surface fires are 
dangerous because they have the ability to spread extremely fast and respond to chang-
ing weather conditions (Clements et al. 2007; Cheney and Sullivan 2008). The risk of 
wildfires is increasing, especially in areas with large contiguous grasslands and during 
dry periods with recurring dry wind conditions (Littell et al. 2009). Therefore, more 
accurate aerial observations of spatial fire behaviour are becoming crucial to advise fire 
management agencies for operational purposes and to gain more detailed scientific 
knowledge about the drivers of wildland fires (Mell et al. 2009; Tymstra et al. 2010). 

The rate of spread (ROS) of wildfires is an important parameter for firefighting 
operations that allows risk assessment, facilitates the development of appropriate strate-
gies and tactics, and provides validation of fire-spread models and a diagnostic proxy for 
fire–atmosphere interactions (Plucinski et al. 2017; Stow et al. 2019). Many studies have 
attempted to quantify fire ROS using remote sensing data. Spatial ROS observations on a 
time scale of hours to days for large fires (>100 ha) are normally achieved using visible 
and Long-Wave thermal Infrared Radiation (LWIR) satellite imagery of wildfires (Liu 
et al. 2018). Studies employing hovering helicopters have used either multispectral or 
LWIR imagery to calculate ROS using image segmentation techniques to identify fire 
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perimeters and their progression (Ononye et al. 2007;  
Paugam et al. 2013; Vivo et al. 2021). 

In highly controlled environments like laboratories or 
during light fuel prescribed burns, ROS is commonly esti-
mated using projected isochrones obtained from visible 
images or on the lag-correlation of temperature point mea-
surements (Cheney and Gould 1995; Finney et al. 2010;  
Gould et al. 2017; Johnston et al. 2018). Abouali and 
Viegas (2019) presented a tool for ROS calculation in a 
laboratory setting; however, the user needs to specify the 
expected direction of fire spread and only one ROS value per 
image is calculated. Non-linear fire behaviour, resulting 
from atmospheric turbulence and fuel variability, requires 
spatially and temporally continuous measurement of ROS. 
This makes instantaneous spatial ROS essential for under-
standing rapid changes related to the three major drivers of 
the fire: fuel, topography and atmospheric forcings. 

Past aerial imaging techniques for ROS retrieval lacked 
sufficient spatial or temporal resolution for scientific purposes 
such as the analysis of atmospheric forcings influencing 
the fire on a small temporal (sub-second) and spatial 
scale (<10 m) (Ononye et al. 2007; Stow et al. 2014). 
Additionally, the current available algorithms for ROS 
retrieval require either predefined ROS directions or extra 
parameters such as temperature thresholds to run (Paugam 
et al. 2013; Valero et al. 2018; Abouali and Viegas 2019;  
Moran et al. 2019). Uncrewed Aerial Vehicle (UAV) systems 
capable of acquiring near-target aerial video of fires have 
only become operational within the last few years. Johnston 
et al. (2018) give a detailed overview of the methods and 
data processing approaches available, as well as the influence 
on the results when applying the algorithms to thermal or 
visible imagery. The thermal technique from Paugam et al. 
(2013) is identified as most suitable by Johnston et al. (2018) 
for retrieving correct ROS estimations, but requires a tem-
perature threshold for the calculation. This threshold needs 
to adapt for each acquisition separately, which provides 
extra uncertainties due to the interactions of the fire with its 
environment such as fuel or atmospheric conditions. Recent 
developments in the field point out that especially high- 
resolution UAV-based ROS is becoming a key input for better 
fire propagation predictions (Akhloufi et al. 2021). 

Alongside the ROS parameter, the flaming zone dynamics 
are a substantial part of the fire spread, expressing the 
interactions of the atmosphere with the fire. Finney et al. 
(2013, 2015) reported that knowledge on the dynamics of 
the flaming zone is essential for the development of physical 
fire spread models. Additionally, the flaming zone dynamics 
and the resulting instantaneous ROS are strongly influenced 
by the atmospheric conditions (Sun et al. 2009). 

The current research is a progression of the pilot study 
previously presented using the same algorithms and data 
(Schumacher et al. 2021). It introduces Thermal Image 
Velocimetry (TIV), an image tracking technique to measure 
spatial thermal pattern velocities, incorporating the dynamics 

and the atmospheric forcings of the fire's flaming zone. The 
TIV approach enables studying fire–fuel–atmosphere interac-
tions in rapidly changing fire environments, specifically in the 
flaming zone based on thermal video. The spatial flaming 
zone velocities from TIV deliver multiple instantaneous fire 
velocities at any certain point over time. Hence, the measure-
ment is not directly comparable with any available ROS 
measurement and an extraction of the fire front called Fire 
Front Line (FFL) is introduced alongside and compared with 
the ROS from the Visible Fire Perimeter Tracking (VFPT) 
algorithm. The VFPT ensures an instantaneous ROS measure-
ment from visible-spectrum video. The algorithms are tested, 
verified and compared using footage acquired from experi-
mental fires. 

The research objectives were:  

1. To build two open-source algorithms that calculate 
instantaneous ROS of fast-spreading wildfires at a high 
spatial resolution;  

2. To demonstrate the relationship between flaming zone 
velocity and the calculated ROS;  

3. To compare the results of the two algorithms and discuss 
how each contributes to various operational and scien-
tific objectives. 

Methodology 

The thermal and visible video was collected from fires in 
two experimental burn plots during a field experiment near 
Darfield, New Zealand, in March 2019, with the location, 
fuel type and meteorological conditions similar to the 2018 
field campaign described by Finney et al. (2018). Four 
200 × 200 m plots were laid out in a harvested wheat field 
containing short stubble (20 cm height) as fuel, of which two 
were used in the research presented here (Fig. 1). The fires 
were ignited along a straight line at the north-eastern edge at 
4:02 pm (Plot 1) and 5:46 pm New Zealand Daylight Time 
(NZDT) (Plot 2) and spread in a south-westerly direction. 
Active fire spread continued for 6:03 and 7:05 min respec-
tively before the flames reached the edge of a fire break zone 
defined as the end of the burn plot. 

The visible and infrared cameras were mounted on two 
separate UAVs. The visible camera captured video from 
200 m above ground level at 25 frames s–1 (fps) and the 
infrared camera was at 120 m above ground level operating 
at 27 fps. The spatial pixel resolution of the infrared video 
was 0.45 and 0.13 m of the visible video. Hot charcoal boxes 
were installed in the plots to enable image stabilisation 
using post-processing software for the infrared imagery 
(Fig. 2). The visible imagery was stabilised using visually 
distinctive features outside the plot such as structures, 
equipment and distinctive patches of vegetation. The soft-
ware stabilisation was accomplished using Blender, an 
open-source software package widely used in research 
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(Cardona and Hartenstein 2006; Ramos et al. 2011; Blender 
Online Community 2019). A detailed description of the 
stabilisation process is available in Schumacher et al. 
(2019). To avoid noise in the output datasets and to allow 
the fire to progress over at least one pixel, the thermal and 
the visible videos were averaged to 3 fps for the analysis. 

The weather conditions on the day of the experiment 
were clear skies with a 10-min average air temperature of 
18.2°C during the experiments. The 10-min average wind 
speed at 2 m height during the burns was 4.4 m s–1 for Plot 1 
and 3.6 m s–1 for Plot 2 measured by a weather station 
located 70 m south of Plot 2. The wind direction during 
both experiments was steady and from the east–northeast 
sector. 

Thermal Image Velocimetry 

TIV is a method introduced by Inagaki et al. (2013) that 
retrieves the velocity of temperature patterns detected from 
spatiotemporal analysis of brightness temperature perturba-
tions in the field of view of a thermal camera. The technique 
was originally developed to examine spatial atmosphere– 
surface interactions and visualisation of near-surface wind 
velocities (Inagaki et al. 2013; Schumacher et al. 2019). TIV 
is based on Particle Image Velocimetry (PIV) techniques and 
uses image correlation of two time-sequential images to 
estimate velocity vectors. The fundamental idea behind this 
approach is that certain patterns (in this study fire patterns) 
within the thermal video move as coherent structures and 

(a)

Plot 1 RGB

Plot 1
IR

N

S

W
E

(b)

Plot 2 RGB

215
m

225 m

Plot 2
IR

Fig. 1. Overview of the burn site. (a) Map of the 
burn plots, with the red line indicating the ignition 
line, the red arrow showing the planned progression 
of the fire. (b) Fuel type of post-harvest wheat stub-
ble approximately 20 cm in height.    
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Fig. 2. Experimental equipment of the prescribed 
burn plots and example images from visible and 
infrared cameras. (a) Fire as seen with the visible 
camera at 33 s; (b) fire as seen with the infrared 
camera at 45 s; (c) UAVs with mounted cameras – 
the blue circle marks the position of the UAV with 
the mounted infrared camera; (d) charcoal box used 
as target for infrared video stabilisation – the targets 
are marked with red squares. Figure taken from   
Schumacher et al. (2021).    
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can therefore be tracked and the movement can be quantif-
ied with a window correlation approach. The process is 
visualised in Fig. 3 and can be explained as follows:  

1. Two images are extracted from the stabilised brightness 
temperature video (in this study: Image T0 and Image 
T0 + 1 s). 

2. An interrogation window of a predefined size is estab-
lished in Image T0. A search area of a predefined size is 
set around the area of the interrogation window in 
image T0 + 1 s.  

3. Moving windows of the same size as the interrogation 
window are extracted from the search area in Image 
T0 + 1 s.  

4. Each moving window is correlated with the interrogation 
window and a correlation map is derived. The vector is 
estimated by analysing the correlation map and finding 
the subpixel peak position of the highest value.  

5. Steps 2–4 are repeated for all pixels in the currently 
extracted images, then Steps 1–4 are repeated for the 
next image pair. 

The interrogation window size of the TIV algorithm is a key 
input parameter to define shape and size of the tracked 
velocities. It was set to the size of 16 by 16 pixels, which 
was previously found to be most successful (Schumacher 
et al. 2019). 

The fire TIV algorithm and calculation are based on a 
modified version of the A-TIV algorithm (Schumacher 2021). 
For the present study, the technique was adapted to work 
with the high fluctuations in the thermal imagery of the fire. 
This allowed the direct application of the TIV algorithm to 

the brightness temperature values from the stabilised thermal 
imagery (see Fig. 4), unlike the usual application to tempera-
ture perturbations. Some pre-processing and specific settings 
were required for a successful TIV calculation. Firstly, to 
avoid erroneous calculations behind the flaming zone in 
smouldering fuel, all sections with constant temperature 
within the interrogation windows were excluded from the 
calculation. Secondly, to avoid error vectors in the smoulder-
ing fuel behind the fire, all interrogation windows with a low 
standard deviation (<15°C) were excluded from the calcula-
tion. Thirdly, in the post-processing, the fire TIV involved an 
additional outlier removal process. Vectors larger or smaller 
than 2 s.d. of the mean in a proximity of eight pixels were 
considered as outliers and substituted with the mean vector 
of the proximity. 

The fire TIV algorithm does not retrieve ROS directly, but 
rather provides a combined measurement of the fire front 
progression and the movements within the flaming zone 
directly adjacent to the fire front. In this study, we refer to 
this combined measurement as the flaming zone velocity. 
The flaming zone velocity was analysed using three 
basic statistical measures applied to the spatially measured 
velocities over the time dimension: standard deviation, mean 
and maximum. These metrics allow us to draw basic conclu-
sions about the flaming zone characteristics. 

Visible Fire Perimeter Tracking 

The VFPT algorithm was inspired by a technique described 
by Moran et al. (2019) that derives ROS from a series of fire 
perimeters taken at different times that form a ‘progression 
raster’ (isochrone extractions) – an image containing 
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Fig. 3. TIV calculation process. Step 1: two consecutive images are extracted from the thermal video (image at time T0 and 
image at T0 + 1 s). Step 2: TIV calculation, with an example of one vector – this step is repeated for each pixel in the currently 
selected T0 image. Step 3: When Step 2 is finished for the current selection, the next two images are extracted from the thermal 
footage. Figure taken from  Schumacher et al. (2021).    
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incremental additions to the burnt area from each time-
stamp. This technique was modified to measure pixel-wise 
ROS directly from the progression raster, without converting 
it to polygons and smoothing the polygons or changing the 
output resolution, ensuring all spatial data are preserved as 
much as possible. Colour thresholds based on the hue, satu-
ration and value (HSV) colour model were developed with 
specific attention to the ignition of the respective pixel and 
applied to the stabilised visible footage to separate burnt 
and flaming areas (collectively referred to as ‘fire-affected 
areas’) from unburnt fuel. Each plot had a custom, manually 
defined HSV threshold that allowed the optimal identifica-
tion of fire-affected areas in each frame of the video. The 
fire-affected areas from consecutive images were subtracted 
to determine the new addition to the fire area during each 
given video frame. Additions from all frames were combined 
into one image to form a progression raster showing at 
which timestamp each pixel transitioned from unburnt to 
fire-affected. The rest of the analysis was performed on this 
single progression raster (top-right in Fig. 4). 

The calculation of the VFPT is realised with the following 
procedure (bottom row in Fig. 4):  

1. A 41 × 41 pixel moving window is established across the 
progression raster. As the window moves, each pixel of 
the progression raster takes turns serving as the pixel of 
interest, located in the centre of the moving window. If 
the pixel of interest is located close to the edge of 
the progression raster, the missing pixels in the moving 
window are filled with null values.  

2. Within the examined window only, the timestamps 
directly before or directly after the centre pixel timestamp 
are retained. If no timestamp is immediately before or 
after the centre pixel's timestamp, the smallest absolute 
time difference between the centre timestamp and the 
surrounding timestamps is identified and only the pixels 
with timestamps within that time difference are retained.  

3. The ROS vector for the pixel of interest is calculated by 
taking the average of all vectors leading from the pixels 
marked with the previous timestamp to the centre pixel, 
and proceeding from the centre pixel towards the pixels 
marked with the next timestamp.  

4. The window moves over so that the next pixel of the 
progression raster is located in its centre, and Steps 2–3 
are repeated until the rate and direction of fire spread are 
calculated for each pixel in the progression raster. 

The fundamental idea behind this procedure is that any 
pixel of interest may be ignited by any surrounding pixel 
that burnt in the timestamp before. Additionally, the pixel of 
interest may also serve as the driver for the surrounding 
pixels that are burnt in the next timestamp. This idea was 
first introduced by Moran et al. (2019) and connected to an 
edge detection algorithm that was substituted for the pre-
sented VFPT technique by a colour tresholding technique. 

Fire Front Line 

Owing to the combined measurement of the flaming zone 
velocity images over time, an additional edge detection is 
needed to derive the fire front from the TIV output. In this 
study, the fire front extraction from TIV or from VFPT is 
called the FFL, a 2-dimensional (time–space) measurement 
enabling continuous underlying conditions of the fire front 
at a certain place or instantaneous forcings to the entire fire 
front at a certain time to be shown. This extraction is 
necessary for calculating instantaneous ROS from the TIV 
flaming zone velocity. 

The fundamental idea of the FFL is to reduce dimensions 
specifically in the TIV output that provides continuous 
2-dimensional flaming zone velocity over time (Table 1). 
To obtain ROS from this output, a dimension reduction is 
necessary. Therefore, the following approach is proposed: 
the fire front is the leading edge of the fire perimeter. 

Fig. 4. Schematic of the calculation of 
the visible perimeter tracking method. 
The yellow colour in the progression 
raster indicates earlier and blue later 
timestamps.    
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The FFL derived from TIV means that the fire front is the 
momentary edge of the flaming zone in the direction of 
progression. The outer edge of the fire front was extracted 
from each flaming zone velocity image over time by search-
ing in each row along the image-oriented y-axis, which is 
positioned along the ignition line, for the first value of the 
progressing fire. This value represents the front of the flam-
ing zone in each row and at each timestamp and, when 
displayed as a line over time, enables visualising effects 
that happen at the same time to the whole fire front or 
continuously over time at a certain place (Fig. 5). This 
representation is particularly helpful for determining the 
temporal one-dimensional ROS of the entire fire front at 
any given time using the TIV flaming zone velocity. The 
extracted FFL is averaged over the remaining spatial dimen-
sion to derive instantaneous ROS over time. 

The representation of ROS from the VFPT method is 
substantially different from the TIV flaming zone velocities. 
ROS is directly represented instead of velocities; however, 
by exchanging the time dimension with the space dimension 
(x-axis), a similar FFL extraction can be achieved. The rows 
of the ROS array remain whereas the timestamps are shifted 
to the x-axis (columns). The FFL constructed from the VFPT 
output occasionally results in null values, because the ROS is 
calculated for each pixel only once and therefore is only 

available when the fire progresses forward between two 
frames. 

As the methodologies for TIV and VFPT differ substantially 
and the results display different information, the comparison 
was realised with the average of the FFL over time, repre-
senting each a 1-dimensional temporal ROS measurement 
for the entire fire front at any certain time. A comparison of 
all parameters derived from TIV and VFPT is available in  
Table 1. VFPT results were adjusted and downsampled to 
match the rotation, extent and resolution of TIV results with 
a nearest-neighbour interpolation. Both results were then 
transformed from image-based coordinates to geographic 
coordinates to ensure a correct ROS comparison. Finally, 
both temporal ROS values were compared using a histogram 
plot emphasising differences and similarities. Various fea-
tures of the fire visible from both methods will be discussed 
to show the advantages and disadvantages of each method. 

The FFL edge detection is comparable with previous 
studies that detect the edge of the flaming zone based on 
its brightness temperature (Paugam et al. 2013; Johnston 
et al. 2018). The FFL could be reproduced from the bright-
ness temperature-based edge detection as well because the 
FFL in detail is a change of dimensions and therefore setting 
a different viewpoint on the ROS data. The advantage is that 
FFL can straighten the fire front and visualise fuel–fire and 
atmospheric–fire interactions. 

Flaming depth and residence time 

The flaming depth and the residence time of both fires were 
calculated using the thermal imagery. The residence time 
per pixel was defined according to previous studies as the 
time period when temperatures exceeded 300°C (Wotton 
et al. 2011). The flaming depth was measured as the depth 
of the flaming zone that exceeded 300°C parallel to the fire 
spread direction. Both measures were then averaged over 
1-min intervals and created a good estimate of local spread 
rates (Johnston et al. 2017). 

Results 

Flaming zone velocity from Thermal Image 
Velocimetry 

The flaming zone velocity calculated using TIV produces 
pixel-resolved velocity values for the flaming zone over time. 

Table 1. Parameters available from the two presented tracking methods.        

Flaming zone velocity 3D 
(temporal–2D spatial) 

Spatial ROS 2D 
(spatial) 

Fire Front Line 2D 
(temporal–spatial) 

Temporal ROS 1D 
(temporal)   

TIV + † + + 

VFPT − + + + 

Symbols: +, available and presented in this study; †, possible but not presented in this study; −, not possible.  
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Fig. 5. Schematic of the calculation of the Fire Front Line from TIV. 
In each row of the image, the first value in the direction of the 
progression of the fire is extracted (pink arrows). Then the values 
are lined up in column 10 to form the Fire Front Line.   
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This means that a pixel, unlike in the VFPT algorithm, can 
display multiple velocity values over time because the TIV 
actually tracks any movement within the thermal video. 
However, before the application of the algorithm, this was 
restricted to areas that effectively show temperature changes 
and are accordingly most likely to happen in the flaming 
zone (see Section Thermal Image Velocimetry). Therefore, 
the mean of the TIV output displays the average progression 
of the fire within the flaming zone for every particular loca-
tion. The standard deviation calculated over time indicates 
the level of fluctuation associated with the flaming zone. 
The maximum flaming zone velocity represents the highest 
flaming zone velocity at a given pixel (Fig. 6). 

Spatial rate of spread from Visible Fire Perimeter 
Tracking 

The VFPT technique produces a three-layer output array, 
with the first layer containing all spatial ROS values, the 
second layer containing the directions of fire spread, and the 
third the progression timestamps of when the pixels transi-
tioned from unburnt to fire-affected. Visual examination of 
ROS produced by this method shows that the fire spread 
varied with the distance from the ignition line and the 
location in the plot (see Fig. 7). For both plots, ROS was 
slow near the ignition line (<0.5 m s–1) and increased for 
the first 30–50 m, after which it reached a constant rate 
(0.75–1.0 m s–1). A lot of variability is evident across the 
plots, with the ROS likely affected by the conditions at a given 
location in the plot. The ROS output shows wave-like patterns 
that are smaller in amplitude close to the ignition line and 
increase in size towards the end of the plot (see Fig. 7). 

White areas in the ROS image indicate areas marked as 
not fire-affected by the algorithm. In most cases, the hot 
charcoal boxes were located in these areas, and caused areas 
of slower or no burning in the lee of these boxes. Occasionally, 
pixels that were burnt in reality were not marked as such by 
the colour thresholding algorithm used, e.g. small clusters of 
empty pixels throughout the image. 

Fire Front Line 

The FFL, which is a parameter derived for each of the TIV 
and VFPT methods, shows the fire front velocity along the 
plot width at a given time. Especially in the TIV extraction 
(TIV-FFL), for Plot 1 there is a clear increase by 0.2 m s–1 on 
average from the previous signal in the ROS of the whole 
fire front at 235 s (see red rectangle for Plot 1(a) in Fig. 8). 
Plot 2 shows the impact of fuel structure on the FFL param-
eter, especially in the beginning of the experiment, with a 
sustained progression over time in certain rows (see red 
rectangle for Plot 2(c) in Fig. 8). Based on the visible foot-
age, this effect may be associated with poor fuel continuity, 
patches of green vegetation diverting the fire and patches 
of stubble catching fire more readily than others during 

ignition. However, an in-depth analysis is not available in 
this study owing to the lack of detailed fuel data. The TIV 
version of the FFL is limited to the field of view of the 
infrared camera showing a width of 125 m for Plot 1 and 
100 m for Plot 2. 

The TIV method produced an FFL without missing values, 
because the measurement of ROS for every frame of the 
video ensured that there is a value for each time–plot row 
combination. This created an FFL that is available over the 
entire time of the burn and represents the dynamic motion 
of the fire within its frontal flame zone. In contrast, the FFL 
velocity matrix extracted from the VFPT (VFPT-FFL) cannot 
resolve a ROS value for the entire width of the plots at every 
timestamp owing to the binary decision of a pixel being 
marked burnt or unburnt in the VFPT-FFL. Therefore, the 
calculation of the VFPT-FFL introduced null values (indicated 
by white space) where no fire progression at the front was 
determined by the VFPT method. This effect can be visually 
distracting, but the FFL obtained from the VFPT output can 
still serve as a tool for identifying patterns. 

The FFL figures for both extraction methods show both 
streamwise and spanwise structures. The spanwise structures 
indicate that the fire has a constant ROS over the length of 
the fire front. This is especially highlighted in Plot 1 of the 
TIV-FFL (Fig. 8a). This certain event at 235 s is not shown by 
the VFPT-FFL method owing to the low density of velocity 
estimates. However, streamwise structures that can be seen 
in Plot 2 of the TIV-FFL (Fig. 8b) and indicate a certain 
similarity of the fire over time are also visible in the 
VFPT-FFL (Fig. 8d). 

Comparison of temporal ROS and flaming depth 
and residence time 

For comparison, the harmonic mean of the FFL velocities 
over time for both methods and for both burn plots was 
calculated based on the extent of the TIV-FFL (Fig. 8). 
Additionally, the comparison was shortened to 366 s for 
Plot 1 and 400 s for Plot 2 owing to the smaller field of 
view of the IR camera. The width of the FFL means was 
reduced by 5 m owing to corner effects and mismatching 
extents. Overall the VFPT-FFL shows a higher average ROS 
of 0.63 m s–1 for Plot 1 (0.56 m s–1 for Plot 2) compared with 
the TIV-FFL average of 0.50 m s–1 (0.43 m s–1 for Plot 2) 
(Fig. 9). The overall average ROS from manual records was 
0.56 m s–1 (203 m in 6 min and 3 s) for Plot 1 and 0.49 m s–1 

(208 m in 7 min and 5 s) for Plot 2. This is in line with the 
findings of Johnston et al. (2018) who showed via an exten-
sive analysis of different ROS approaches from thermal and 
visible imagery that each technique will measure a slightly 
different ROS owing to the challenges associated with the 
determination of the position of the fire front. In their study, 
the visible approach from a side view measured a higher 
ROS and the thermal approach based on Paugam et al. 
(2013) produced a lower ROS compared with the overall 
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mean of the eight approaches tested. Both of the ROS distri-
butions obtained from Plot 1 are similarly positively skewed; 
however, the kurtosis of the TIV-FFL distribution is higher 
than the kurtosis of the VFPT-FFL. This can be attributed to 

the high decrease in probability density at ~0.4 m s–1 

(Fig. 9). The skewness and kurtosis values of the temporal 
ROS distributions for Plot 2 show a similar result (Table 2). 
The direction and speed of the ROS are shown in Fig. 10. 
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Fig. 6. Flaming zone velocity for Plots 1 and 2 obtained from the TIV method. (a) Temporal mean; (b) temporal standard 
deviation; and (c) temporal maximum flaming zone velocity for Plot 1; (d) temporal mean; (e) temporal standard deviation; and 
(f) temporal maximum for Plot 2. The red squares in (a) and (d) mark the locations of the stabilisation points where the charcoal 
boxes were placed. The red arrows show the direction of spread within the plots. The blue square in Plot 1(a) marks the location 
of other instrumentation, which created disturbances of the fire. Visible is the segmented wave-like progression of the fire in 
(b) and (c). Clearly visible in Plot 2(e) and (f) is the streakiness of the burning pattern in the direction of the fire, likely caused by 
grass patches in this burn plot.    
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Especially in Plot 2, a higher westerly component of the 
VFPT is evident. The directions of higher velocities retrieved 
from both algorithms match better compared with a larger 
scattering of lower velocities. 

Flaming depth and residence time were extracted from 
the thermal imagery with a threshold of 300°C (Section 
Flaming depth and residence time). Table 3 gives an over-
view of the flaming zone characteristics as well as the 
estimated ROS that results from these measures. 

Discussion 

Visible versus thermal imagery 

The videos were collected during the experimental burns 
using two UAVs flying at heights of 200 m (visible) and 
120 m (infrared). The advantage of using visible-spectrum 
footage is the higher available resolution of 0.13 m (versus 

0.45 m for the IR camera), the lower cost, the wide availa-
bility of such camera equipment in the operational world, 
and its versatility and small size and weight (Akhloufi et al. 
2021). The disadvantage of visible-spectrum footage is 
that no temperatures are associated with the imagery, 
which makes it very challenging to resolve flaming zone 
processes within the fire front revealed by infrared cameras. 
Differentiating fire-affected areas from unburnt fuel is also 
more difficult in visible-spectrum footage owing to the pres-
ence of smoke, and, therefore, the colour value threshold is 
not necessarily an optimal indicator of burning and burnt 
areas. 

The inability of visible imagery to detect newly burnt 
areas owing to the presence of smoke can lead to under-
estimation of ROS while the newly burnt pixel is obscured, 
and overestimation of ROS when the pixel becomes visible 
again. Various possible image exposures, relative angles to 
the sun, fuel types and reflectance of the ground surface 
affect the colour of the image, meaning that colour thresh-
olds have to be defined for each fire separately in order to 
produce reliable results. For instance, a particular shade of 
yellow stubble can be very similar to parts of the flaming 
front, and dark shadows in unburnt fuels can be similar to 
already burnt areas. Consequently, the user has to carefully 
select colour thresholds that will maximise the correct 
detection of fire-affected areas. This step increases the 
amount of manual pre-processing required from the user, 
and in the future, it would be beneficial to replace the semi- 
automatic thresholding approach with a robust machine 
learning algorithm for outlining the fire perimeter. 

Thermal imagery has the advantage of associated bright-
ness temperatures and less smoke interference at the fire 
front. However, the spatial resolution of thermal infrared 
imagery is low compared with existing visible-spectrum 
cameras. This is due to the physical property of infrared 
light carrying less energy than visible light. Therefore, infra-
red camera sensors will contain fewer pixels than a visible 
camera, resulting in lower-resolution images. This implies that 
the UAV flight height is limited to the range that allows 
thermal cameras to resolve temperatures within the fire 
while still attempting to maximise the field of view. 
Actively cooled cameras can partially solve this problem; 
however, they cannot be fitted onto UAVs owing to their 
large size and weight and would instead require a helicopter- 
based system. 

The use of airborne thermal imagery for fire progression 
and the estimation of ROS is not new (Stow et al. 2019). 
Additionally, thermal imagery plays a major role in the 
operational detection of remaining fire hotspots (Wardihani 
et al. 2018; Akhloufi et al. 2021). This allows further use of 
thermal imagery in estimation of fire spread, possibly along-
side TIV as tracking algorithm. 

When using UAVs, footage stabilisation is essential but 
a non-trivial process. Image stabilisation was undertaken 
successfully in this study and removed any motion from 
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the cameras, but it is recommended future algorithm users 
pay close attention to this step and carefully consider the type 
and location of the hot reference targets. An alternative tech-
nique to stabilise thermal imagery of wildfires is presented by  

Valero et al. (2021), which includes a feature detection algo-
rithm; however, interference introduced by large camera 
movements or other moving objects can still have a negative 
impact on the image stabilisation and registration. 
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Flaming depth and residence time calculated from the 
thermal imagery estimate a local ROS value that is on aver-
age similar to the ROS means calculated from the TIV mea-
surement. ROS calculated from flaming depth and residence 
time slowly increases until minute 4–5 in both plots and then 
decreases, which is matches the TIV-FFL calculation in Fig. 8. 

Visible Fire Perimeter Tracking versus Thermal 
Image Velocimetry 

In this study, the fire perimeter tracking method was used to 
analyse visible imagery only; however, the approach can 
also be easily applied to infrared footage, using temperature 
values instead of HSV colour values for extracting fire-affected 
areas to form the progression raster. Because visible-spectrum 
imagery does not have temperature values assigned to each 
pixel, extracting fire-affected areas from visible imagery had 
to be performed using HSV values instead. The VFPT 
approach classifies a pixel as fire-affected as soon as the 
HSV colour threshold is reached, even if in reality the 
flame only momentarily covered the area of interest and 
retreated leaving the fuel unburned. This problem is 
addressed by converting the original 25 fps footage to 3 fps 
to minimise the flame tilting effects. Additionally, the HSV 
thresholds were carefully chosen to minimise false-positive 
identifications of fire-affected areas. The idea was that if a 
fire-affected pixel did not get detected in the current frame, 
it would be identified in one of the subsequent frames, 

introducing only a small error to the timing of its ignition. 
However, if an unaffected pixel is falsely registered as fire- 
affected, it will introduce significant noise to the resulting 
fire-progression raster and can substantially increase error in 
the calculated ROS. On the edges of the plots, the VFPT algo-
rithm on some occasions identified previously burnt fire breaks 
as fire-affected areas, which led to a higher number of error 
vectors in this area. In order to remove this noise, the VFPT 
spatial ROS was clipped to the extent of the experimental plot. 
The size of the VFPT moving window (41 × 41 pixels) was 
picked based on an estimate of the radiative pre-heating extent 
(~2 m), which directly affects the fire spread. Moreover, the 
maximum ROS should also be covered by the moving window. 

The VFPT-FFL is not an optimal measure to extract space– 
time continuous flaming zone velocity owing to its binary 
decision of marking a pixel as burnt or unburnt whereas the 
TIV-FFL may be able to extract multiple ROS values for each 
pixel while the flaming zone progresses. 

In contrast to the VFPT, the TIV is not a perimeter track-
ing technique in the first place and therefore mostly displays 
the momentary movements of the entire flaming zone 
including flames and hot air parcels. This makes the TIV 
flaming zone velocity ideal to analyse flaming zone dynam-
ics occurring behind the fire front, especially in connection 
with the atmospheric forcings driving the fire. The informa-
tion gained can further help to understand dynamics of 
fire–atmosphere interactions. A small example of this is 
the enhanced progression at 235 s in the TIV-FFL of Plot 1 
(Fig. 8a). However, owing to a lack of high-frequency wind 
velocity measurements, a further assessment of this struc-
ture is not possible. 

In a field campaign conducted in 2018 that was similar to 
the one presented in the current study, TIV proved to be a 
useful tool to derive turbulent fire advection velocities that 
matched well with wind velocity patterns. The narrow field 
of view of the camera with a higher resolution is also cap-
able of resolving smaller structures within the flaming zone 
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Fig. 9. Comparison of TIV tracking and 
visible tracking for both plots. The TIV 
ROS is generally slightly above the visible 
tracking ROS.    

Table 2. Statistics of the distributions shown in  Fig. 9.      

Plot 1 (TIV-FFL/ 
VFPT-FFL) 

Plot 2 (TIV-FFL/ 
VFPT-FFL)   

Kurtosis 1.48/0.05 0.63/0.25 

Skewness 0.21/0.11 0.03/0.44 

Normal distribution No/No No/No   
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(Katurji et al. 2021). The statistical metrics (maximum, 
mean and standard deviation) of the TIV output display the 
progression of the flaming zone and potentially smouldering 
behind the fire front. This is especially dependent on the 
input parameters of the TIV algorithm defining the amount 
of filtering of the brightness temperatures from the thermal 
imagery behind the flaming zone. However, with adaptations 
in the post-processing of the flaming zone velocity, or with 
the VFPT method applied to the thermal video, perimeter 
tracking similar to the presented VFPT could be accomplished 
for the thermal imagery. Additionally, the threshold value 
of the VFPT also requires an informed user to adjust the 
parameters to obtain accurate results. 

The comparison between TIV-FFL and the TIV flaming 
zone velocity also demonstrates the relationship between 

flaming zone velocities and the calculated ROS. Whereas 
the mean of the entire flaming zone progression is low 
(approximately 0.1 m s–1) owing to smouldering effects 
in the back of the flaming zone, the maximum can reach 
2.2 m s–1. However, the TIV-FFL ranges below 1.8 m s–1, 
which means that the highest flaming zone velocities do 
not contribute to the fire front. This means that flaming 
zone coherent motions can reach higher velocities than the 
measured ROS at the fire front. This is specifically significant 
for studying fire–atmospheric interactions, which are related 
to other factors in addition to the fire front and its ROS. 

TIV enables scientists to explore the spatial statistics of 
flaming zone velocities and the flaming zone kinematics, 
contributing to our understanding of fire spread dynamics. 
As shown in this study, the extraction of the fire front can 
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Fig. 10. Temporal ROS distribution 
from averaged TIV-FFL and VFPT-FFL. In 
general, the VFPT-FFL is slightly more 
scattered compared with the TIV-FFL. 
The direction shown does not follow 
the meteorological convention (from- 
direction); instead, the direction of the 
fire spread is shown in the oceanic con-
vention (to-direction).    

Table 3. Flaming depth (FD) and residence time (RT) extracted from thermal imagery.          

Time (min) 0–1 1–2 2–3 4–5 5–6 6–7 Overall average   

Plot 1 FD (m) 4.3 10.9 22.1 15.9 8.7  10.7 

Plot 1 RT (s) 15.8 20.1 22.8 21.1 19.9  18.8 

Plot 1 ROS (m s–1) 0.27 0.54 0.97 0.75 0.44  0.57 

Plot 2 FD (m) 1.4 4.6 11.5 18.2 17.6 6.6 10 

Plot 2 RT (s) 12.9 19 22.8 22.6 22.8 19.3 19.9 

Plot 2 ROS (m s–1) 0.11 0.24 0.5 0.81 0.77 0.34 0.5   
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lead to detailed insights connected to fuel characteristics 
and atmospheric forcings influencing wildfires. The TIV 
technique with additional FFL extraction is more accurate 
in deriving ROS compared with the VFPT method owing to 
the known differences in the estimation of the flaming front 
(Johnston et al. 2018). 

Both methodologies imply certain limitations such as the 
relatively low resolution of the thermal imagery compared 
with the higher resolution of the visible imagery. This also 
has implications on the flight height of the drone. Also, the 
resolved temperature of the thermal imagery is impacted by 
the flight height and resolution of the thermal imager 
because of the indirect averaging effect of the pixel size. 
Specifically, TIV is dependent on coherent motions of the 
flaming zone and therefore involves higher spatial resolu-
tion than the VFPT technique. 

The VFPT technique is limited when displaying the 
dynamics of the flaming zone and displays the overall 
motion of a certain predefined window. Therefore, it is not 
capable of displaying flaming zone dynamics. Furthermore, 
it currently requires predefined parameters such as a colour 
value threshold to run, which will need further investigation 
in the future to allow automated retrieval of ROS. 

Applications 

The possible applications of the two presented algorithms 
can extend from determining fire spread for operational 
firefighting purposes to fire behaviour analysis and modelling. 
The ROS output from the TIV and VFPT methods can poten-
tially form validation datasets for predictive fire spread models 
e.g. Forestry Canada (1992), Rothermel (1972), which under-
pin fire growth prediction tools such as Farsite, Prometheus or 
the Wildland Urban Interface Fire Dynamics Simulator (Finney 
1998; Mell et al. 2009; Tymstra et al. 2010). Additionally, 
instantaneous ROS in particular can be adopted into existing 
frameworks such as the Kalman filter-based methodology of  
Lin et al. (2019) and Rochoux et al. (2015) to improve the 
wildfire progression forecasts for firefighting. Akhloufi et al. 
(2021) describes more of these fire monitoring, detection and 
management strategies in which TIV and VFPT methods could 
be integrated, either as validation data or as operational tools. 
The challenges remain for large fires that exceed the field of 
view of the cameras. New approaches using multiple drones 
similarly to Viseras et al. (2021) or other airborne systems 
(e.g. helicopters) have to be tested before being implemented 
operationally. 

Conclusion and outlook 

In this study, we present two newly developed algorithms 
to retrieve and analyse the instantaneous spatial ROS of 
fast-spreading fires. The first algorithm uses visible spectrum 
video of the fire and a perimeter-tracking methodology to 

estimate the instantaneous ROS. The second uses infrared 
video and subsequent TIV technique to track the fire evolu-
tion. This can be used to estimate spatial ROS; however, the 
output of TIV is more focused on the dynamics of the flaming 
zone and therefore the interaction of the atmosphere with the 
fire. When compared, the TIV method produces on average 
0.1 m s–1 slower spread rates compared with VFPT. In the 
future, imagery obtained from more experimental burns in 
wheat stubble and gorse scrub fires will be used to further 
verify and test both techniques; however, smoke interference 
may become a greater issue in other fuel types, which could 
mean a lower signal-to-noise ratio for both visible and 
thermal imagery. Overall, both algorithms provide new 
spatiotemporal estimates of ROS for fast-spreading fires 
that may be useful for firefighters, fire scientists and fire 
modellers. Both algorithms are open-source and available on 
github with brief examples from the presented data (Melnik 
2021; Schumacher 2021). In particular, the VFPT, which uses 
visible video imagery, is a good measure for operational ROS 
quantification, as it provides information at the flaming 
front, indicating how fast the fire is expanding and in what 
direction. Utilising this information in a fire behaviour 
model can yield valuable insights into the most likely trajec-
tory of the fire, and therefore appropriate firefighting tech-
niques and assets most at risk. The TIV infrared imagery 
method can further help scientists to understand flaming 
zone dynamics specifically connected with atmospheric mea-
surements to evaluate fire–atmospheric interactions. 
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