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Physicochemical characteristics controlling the flammability 
of live Pinus banksiana needles in central Alberta, Canada 
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ABSTRACT 

Background. Few studies have focused on the integral assessment of live fuel flammability in the 
boreal forest. Aims. We aimed to examine the flammability of living needles of jack pine (Pinus 
banksiana) as characterised by their form, moisture and chemical content at different ages and 
times of the year. Methods. With a calorimeter and open flame, we estimated needle ignitability, 
consumption rate, maximum speed and amount of energy released. We measured their form, 
moisture and chemical content. Key results. Needle form has a major effect on ignitability, 
whereas chemical composition primarily influences the amount and rate of energy release. 
Needles <1 year old are the least flammable; they are rounder and voluminous, with higher 
moisture and nitrogen content. Needles ≥1 year old are more flammable; they are drier, more 
curved, thinner, longer, and contain more carbon and terpenes. Needles release more energy 
during the early growing season, when starch and lipids are at their peak concentrations. 
Conclusions. Moisture content is not the major factor affecting the flammability of jack pine 
live needles; physicochemical changes specific to age and month of collection are the most 
influential factors. Implications. Assessing the multi-faceted properties of live fuels flammability 
will help to comprehend stand- and landscape-scale fire behaviour.  

Keywords: boreal forest, calorimetry, flammability, forest fires, jack pine, live fuels, pine 
needles, wildfires. 

Introduction 

Research on the flammability of fuels has been a priority for understanding forest fire 
behaviour for decades (Bond and van Wilgen 1996). Although tree crowns represent a 
significant source of fuel for high-intensity crown fires (the most prevalent fire type 
occurring in the Canadian boreal forest; de Groot et al. 2013), much of this research has 
focused on downed woody debris and litter. Conversely, the flammability of the living 
fraction of the boreal vegetation remains relatively understudied (Rivera et al. 2012;  
Finney et al. 2013). 

The spatial and temporal context determine the assessment of forest flammability. At 
the particle scale (i.e. leaves, twigs, and small branches) and short periods (seconds), 
flammability encompasses four parameters: ignitability (ability to catch fire); combusti
bility (the rate of energy release); sustainability (fuel capacity to maintain flaming 
combustion, and the amount of energy released); and consumability (velocity of solid 
fuel conversion into gases) (Anderson 1970; Martin et al. 1994). At this scale, it is 
possible to quantify flammability in laboratory settings accurately, but not without 
limitations; flammability studies are very diverse in terms of techniques, equipment, 
fuel units and flammable parameters considered (Popović et al. 2021), which makes 
generalisations and comparisons challenging. 

Foliar moisture persists as the primary perceived driver of forest flammability because 
of water’s strong physicochemical properties: high specific heat and high thermal 
conductivity. Consequently, water-rich fuels require larger amounts of energy during 
the preheating stage, so that water can evaporate and dissipate before they can burn. 
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Additionally, water’s diffusivity as aerosol or steam reduces 
the immediate oxygen availability necessary for combustion 
(Byram 1959; Simms and Law 1967; Philpot 1970; Rothermel 
1972; Pyne et al. 1996). Based on its known physicochemical 
properties and estimation simplicity, foliar moisture remains 
the cornerstone factor for forest fire modelling (Rothermel 
1972; Van Wagner 1977; Alexander and Cruz 2012;  
McAllister et al. 2012). The high amount of moisture in 
living fuels led us to assume that they would burn similarly 
to dead fuels containing substantial moisture. In contrast to 
dead duels, living fuels can ignite before their moisture is 
expelled entirely (Pickett et al. 2010) and sustain and spread 
fire at foliar moisture contents >100% (Weise et al. 2005), 
whereas dead fuels hardly ignite or spread fire at moisture 
content >35% (Hawley 1926). 

Dead fuels are functionally, physically, and chemically 
different from living fuels; therefore, their flammability 
differs. Dead fuels water dynamics follow relatively simple 
physical water absorption and evaporation principles, so they 
are more susceptible to the influence of weather. On the other 
hand, water uptake and losses by plants occur by evapo
transpiration, a complex process involving their phenology, 
immediate environment, a multitude of interacting struc
tures, chemical compounds, and other physical phenomena 
(Johnson 1966). Moreover, water in plant tissues acts as a 
solvent, providing colligative properties (Burgan 1979; Bloom 
et al. 1985; Raven 1998; Pyne 2007; Finney et al. 2013). 
Thus, understanding the physiological role and dynamics of 
water in plants helps understand their flammability. 

Although multiple studies identify foliar moisture as the 
primary driver of flammability, their results also suggest 
interactions with organic compounds. Chemical components 
that function as structure (e.g. cellulose), defence (e.g. 
waxes, oils, and terpenes in the resin), and energy storage 
(e.g. fats and starch) are highly flammable (Carson and 
Mumford 1994), with the potential to enhance the flamma
bility of the leaves. Despite results describing the potential 
effects of the chemical composition of leaves since the past 
century (Hubert 1932; Johnson 1966; Philpot and Mutch 
1971), the study of flammability has, for decades, been 
predominantly focused on moisture content. More recently, 
researchers have turned to study how the chemical composi
tion of leaves affect flammability, including fats (van Wilgen 
et al. 1990), terpenes and other volatile organic volatiles 
(Owens et al. 1998; Behm et al. 2004; de Lillis et al. 2009;  
Della Rocca et al. 2017; Romero et al. 2019; Ganteaume 
et al. 2021; Guerrero et al. 2021), sugars, starch, and assort
ments of these compounds (Jolly et al. 2012; McAllister et al. 
2012; Page et al. 2012). Moreover, the shape and size of 
leaves regulate the heat transfer process and kinetics of 
combustion at the particle scale (Kanury 1994; McAllister 
et al. 2012; Naresh et al. 2018). Besides foliar moisture 
content, many morphological and chemical traits have 
been identified to affect flammability. However, an integral 
assessment of these characteristics related to the boreal tree’s 

phenology is lacking. This study aims to examine the flamma
bility changes of living needles of jack pine (Pinus banksiana 
Lamb) ensuing from different developmental stages and nee
dle ages during the growing season in central Alberta, Canada. 
We selected this species due to its abundance, proclivity to 
wildfires, and its role in the study of forest fire behaviour and 
ecology in Canada to develop the Canadian Forest Fire Rating 
System (Heinselman 1973; Little 1979; Van Wagner 1987;  
Gauthier et al. 1993; Farrar 1995). In particular, we aimed to:  

1. Assess the relative contributions of living needle form, 
moisture and chemical content to their ignitability, 
combustibility, sustainability and consumability; 

2. Identify the variables of needle form, moisture and chemi
cal that drive the different aspects of flammability; and  

3. Recognise the temporal patterns of needle flammability, 
form, moisture and chemical content during the growing 
season and according to their age. 

Methods 

To investigate the role of moisture content and jack pine 
living needles’ morphological and chemical characteristics 
on their flammability, we studied three different needle ages 
collected monthly during the growing season in Alberta, 
Canada. We employed a modified cone calorimeter with 
an open flame as the heat source and obtained the needles’ 
flammable characteristics: ignitability, combustibility, sustain
ability and consumability. 

Sample collection 

We collected needles from eight jack pine trees at the natural 
area of the University of Alberta Botanic Garden (Alberta, 
Canada, 53°24′07.1″N 113°45′14.6″W) between 1100 and 
1400 hours each month, from June to September 2015. To 
reduce the environmental humidity influence on the needles, 
we sampled the trees on days with no rain over the previous 
3 days. This site belongs to the Boreal Mixedwood ecological 
area, where jack pine is abundant in dry sandy soils 
(Beckingham and Archibald 1996). From June to September 
2015, the average temperature and total precipitation 
normals in this area were greater for daily average temper
ature (14.8°C) and lower for total precipitation (221 mm) 
than the climate normals (1981–2010; 14.0°C and 303 mm; 
Supplementary Table S1, Government of Canada 2019). This 
period overlaps with the highest wildfire activity in Alberta, 
also referred to as ‘fire season’ (1 March–31 October), which 
exhibits a peak of number of fires during the summer 
(specially June and July; Campos-Ruiz et al. 2018). 

We prepared the samples for flammability and biometrical 
analysis (form, and chemical) in the laboratory. For each 
monthly sample, we clipped three twigs from the middle 
section of the crown in the south-facing side of the same 
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trees. We stored them in sealed plastic bags and transported 
them inside a cooler with icepacks to the laboratory, where 
we kept them in a fridge at 4°C. The needles were manually 
detached from the twigs and, based on their distance from 
the distal point of the twig, separated them according to 
their age: 0 years old or new (newly emerged during the 
current year), 1 year old, or 2 years old. We obtained 96 
stacks of pine needles (samples) from the combination of 
three needle ages (new, 1 year old, 2 years old), 4 months 
(June–September), and eight tree replicates. We divided 
each sample into three subsamples destined for flammability, 
chemical and morphological analysis. 

Flammability tests 

We subjected the first set of subsamples (~4 g or 50 needles 
each) to an oxygen consumption calorimetry experiment 
employing a modified mass loss cone calorimeter (Mass 
Loss Calorimeter ISO 13927, Fire Testing Technology, East 
Grinstead, West Sussex, UK) at the Protective Clothing and 
Equipment Research Facility of the University of Alberta, 
Edmonton. The cone calorimeter measures heat release 
(EHC), heat release rate (HRR), and gravimetric changes 
of a sample exposed to a constant heat flux (Babrauskas 
1984). The heat source is usually a radiant heater with the 
shape of a cone positioned over the sample. We opted for a 
more realistic setup where we exposed the samples to the 
radiation and convection of a flame instead of a radiator. 
We employed an open methane burner (10 × 10 cm) set at 
a constant flow of 9 L per min (Melnik et al. 2022; 
Supplementary Fig. S1). We estimated the time to ignition 
(IGT) as the time elapsed between the burner start and the 
observation of a flaming reaction of the sample. This time 
was later confirmed with the heat release rate output from 
the sample (Supplementary Fig. S2). We subtracted the 
contribution of the flame from the output to obtain the 
differential heat release rate (i.e. the difference between 
measurements with and without a sample, hereafter HRR) 
and the effective heat of combustion based on the total 
heat release (EHC; Table 1). We placed each subsample 
uniformly on a metallic mesh holder (10 × 10 cm) at 5 cm 
over the burner and exposed it to the flame for at least 80 s 
when the whole sample was consumed entirely. We inter
preted the outputs in terms of flammability components: 

time to ignition (ignitability); peak heat release rate (com
bustibility); effective heat of combustion (sustainability); 
and the average rate of mass loss (consumability; Table 1). 

Moisture content 

We calculated the foliar moisture content (FMC, dry-based 
%) from the form subsamples by weighing the needles 
before and after drying them in a convection oven at 75°C 
for 48 h (Table 2). 

Form analysis 

We measured form characteristics from the second set of 
subsamples by scanning 20 needles per treatment combina
tion and replicate (age × month × tree) and processed the 
images with the WINSEEDLE software (Reagent Instruments 
Incorporated, Quebec, QC, Canada). We obtained the sample 
averages (per needle) curvature and form coefficient and 
calculated the surface-area-to-volume ratio by assuming the 
volume of a hemi-ellipsoid and adjusting the projected area to 
a hemi-surface leaf area (Table 2; Bond-Lamberty et al. 2003). 

Chemical analysis 

We kept the third set of subsamples frozen at −25°C and 
sent in a cooler with dry ice to the Chemistry Services 
Laboratory (Victoria, BC, Canada) of Natural Resources 
Canada for chemical analysis. The analysis included the 
most abundant, functionally relevant and high energy com
ponents of needles: total nitrogen, carbon, non-structural 
carbon (NSC’s: starch and soluble sugars), lipids, and terpenes 
(Table 2. Detailed methods of extraction and measure in 
Supplementary Table S2). 

Statistical analysis 

The experiment was based on a repeated-measures factorial 
design to test the effects of age (three levels: 0, 1 and 2 years 
old) and month (June, July, August, and September) on 
their flammability, foliar moisture content, form, and chem
ical makeup of the needles. First, to explore and visualise 
the similarity between samples and possible relationships 
between flammability and biometric variables, we used a 
non-metric multidimensional scaling (NMDS) procedure. 

Table 1. Flammability parameters and their associated variables obtained from the cone calorimeter.       

Parameter Variable Abbreviation Calculation Units   

Ignitability Time to ignition IGT The time to ignition after being exposed to the flame. Visual assessment and 
confirmation with the HRR curve. Short TI means greater ignitability 

s 

Combustibility Peak heat release rate HRR The maximum value of the velocity of energy release kW m−2 

Sustainability Effective heat of 
combustion 

EHC The amount of energy released at 80 s, normalised by the initial sample mass kJ g−1 

Consumability Average mass loss rate MLR The slope of the mass loss per unit of time g s−1   
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Second, to confirm the significance of the sample groupings 
observed with the NMDS, we used its scores to test for 
differences between ages and months of sampling with a 
permutational Multivariate Analysis of Variance (MANOVA) 
for repeated measures. Third, we calculated the relative 
contributions of moisture content, form and chemical con
tent on flammability through variance partitioning, based on 
the NMDS output. Fourth, we ran correlations for repeated 
measures to confirm associations between flammability and 
biometric variables. Finally, we tested the effect of needle 
age and month of collection on each flammability and physi
cochemical variable, employing a repeated-measures analysis 
of variance (rmANOVA) and pairwise comparisons. 

We calculated the distances between observations with 
Bray–Curtis dissimilarities (‘distance’ function, ecodist pack
age in R; Goslee and Urban 2007; R Core Team 2008), 
ordinated those observations via the ‘nmds’ function (vegan 
package in R; R Core Team 2008; Oksanen et al. 2020), and 
grouped them by age with 95% confidence limit ellipses. To 
test whether age and month were significant, we employed 
the scores derived from the NMDS (two-dimensional) and 
used a permutational MANOVA for repeated measures 
(‘MANOVA’ function in the MANOVA.RM package for R;  
Friedrich et al. 2018). The power to detect significant differ
ences among treatments by MANOVA was 0.72 (α = 0.05, 
n =96) (G*Power software; Faul et al. 2007). This value, 
which ranges from zero to one, reflects the capability to find 
differences between treatments based on alpha, the magni
tude of expected change (medium in this case), the number 
of samples, the number of treatments, and the number of 
repeated measurements. 

Next, we performed a variation partitioning procedure to 
determine the relative and combined explanatory power of 

moisture content and grouped morphological and chemical 
characteristics on each flammability component. We employed 
the ‘varpart’ function from the vegan R package using the 
grouped variables in Table 2. Finally, we used distance-based 
redundancy analysis (dbRDA) to assess the significance of the 
unique variation explained by each of the three groups. 

We used repeated-measures correlation tests (RMCOR) 
and NMDS to find potential relationships between flamm
ability variables with chemical and form features. RMCORR 
calculates correlation coefficients (rrm) in repeated measures 
(within-subjects) designs without averaging the repeated 
measures that may obscure meaningful relationships. The 
resulting coefficient delivers the same interpretation as 
a Pearson correlation coefficient, with the advantage of 
having higher degrees of freedom and power than averaged 
data analysed with traditional correlation techniques. 
Additionally, in RMCOR, the effect size is calculated with 
bootstrapping to estimate the parameters’ accuracy; thus, 
non-normally distributed data is supported. We calculated 
the correlations between variables using the ‘rmcorr’ func
tion in R (rmcorr package; Bakdash and Marusich 2017). 

We tested the effect of needle age and month of collection 
on flammability, morphological, and chemical variables with 
rmANOVA. We checked the normality data and residuals for 
each variable. If any of the assumptions for this test were 
violated, we transformed the data (log, root squared, or logit 
transform) before the analysis. We performed the rmANOVA 
(specifying for repeated measures on the subjects), Tukey 
multiple comparisons test, and grouping. These tests were 
performed with the functions ‘aov’, ‘lsmeans’, and ‘cdl’ in 
base R, lsmeans, and multcomp packages; (Hothorn 2008;  
Lenth 2016). We adjusted P-values through false discovery 
rate methods to control type I errors. 

Table 2. Biometric variables of jack pine needles.       

Parameter Variable Acronym Calculation/Method Units   

Moisture content Foliar moisture content FMC Dry basis gravimetric moisture content (fresh weight/dry weight) × 100 % 

Morphological Curvature CRV A/B, where A is the perpendicular distance from the centre of the needle at the 
maximum straight width to the straight length and B is the straight length. Higher 
values represent more curvature. 

– 

Form coefficient FCO 4πA/P, where A is the area and P is the perimeter. A value of 1 defines a perfect 
circle and 0 a filiform object. 

Surface-area-to-volume 
ratio 

AVR Area/volume. Estimation from the hemi-surface leaf area and three-dimensional 
model assuming a hemi-ellipsoid shape. 

mm−1 

Chemical Nitrogen N Determined by combustion and elemental analyser (Costech 4010 with EAS 
Clarity data collection software). 

% 

Carbon C % 

Soluble sugars SS Determined calorimetrically (Thermo Scientific Evolution 300 UV/Vis 
spectrometer) after extraction by using an anthrone reagent. Enzimatic 
conversion to glucose was performed for starch. 

% 

Starch ST % 

Lipids LI Extraction with hexane solvent and extraction and determination with a gas 
chromatography spectrometer (Agilent Masshunter 7890/5975C and NIST2014 
spectral database). 

% 

Terpenes TE %   
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Results 

Flammability 

Younger needles, especially in the earlier growing season, 
were significantly different from older ones based on their 
flammability, FMC (foliar moisture content) and biometric 
variables, which results in distinct grouping in the NMDS 
(Fig. 1). Biometrical variables (form and chemical composi
tion) explained most of the variance of each flammability 
component, but FMC explained the least (Fig. 2). The older 
needles (1 and 2 years old) had higher HRR (heat release 
rates) and MLR (mass loss rates) and lower IGT (ignition 
times) than new (0 years old) needles (Figs 1, 3a, b, d). We 
observed significantly higher EHC (effective heat of combus
tion) during the first half than the second half of the growing 
season, regardless of age (Fig. 3c). We found multiple signif
icant correlations between IGT, HRR, EHC and MLR with the 
needles’ physical and chemical characteristics, such as foliar 
moisture content, form coefficient, curvature, surface-to- 
volume ratio, Nitrogen, Carbon and terpenes. Only EHC 
showed correlations with lipids and starch (Table 3). In 
general, age and month of collection had a significant effect 
on live needle flammability, their moisture content, form and 
chemical composition (Supplementary Tables S3–S5). 

The resulting NMDS showed that new needles formed a 
distinct group almost independently from the rest of the 
data during June and July, but overlapped in August and 
September with the oldest age groups. At least one group 
resulting from age and month of collection in the NMDS 
(Fig. 1) was statistically different from the rest (rmMANOVA, 

P = 0.001, month P = 0.001, number of permutations = 999). 
The first axis reflects significant age differences, with 
variations in IGT, HRR, and MLR associated with FMC, 
FCO, CRV, AVR, N, C, and TE content. In contrast, the second 
axis reflects the month of collection and variations in EHC 
associated with ST and LI. All variables, except for SS, were 
significantly correlated to the ordination axes (Supplementary 
Table S6). The NMDS had a stress value of 0.05, which is an 
excellent representation of the data in two dimensions (Clarke 
1993; Fig. 1, Supplementary Table S6). 

Foliar moisture content, form, and chemical 
content 

The contribution of foliar moisture content to flammability 
variance was minor compared with form and chemical com
position. According to the variation partitioning, FMC only 
accounts for 1% or less of each component of flammability’s 
unique variance, whereas form and chemistry explain 
larger amounts (Fig. 2). Needle form, chemistry, and FMC 
explained 71% of IGT variance together. Although FMC, 
form and chemistry explained 45% (1 + 3+ 3 + 38), 65% 
(12 + 3 + 38 + 12) and 54% (1 + 3+ 12 + 38) of IGT var
iance respectively, a large percentage (38%) was explained 
simultaneously by the three sets of variables (shared or 
redundant). FMC and chemistry only explain 1%, whereas 
form explains 12% uniquely (Fig. 2a). 

Chemical composition explained most of the HRR variance, 
shared and unique. Chemistry, form, and FMC explained 21, 
18 and 17% of HRR variance respectively, but uniquely they 
each explained <4%. In total all variable sets explained 24% 
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Fig. 1. Non-metric multidimensional scaling of jack pine needles (stress = 0.05) with 95% confidence ellipses for the age factor. 
Different colours indicate sample age and different shapes the month of the collection. The strength of the relationship between 
variables is reflected by the arrow’s length, whereas their direction indicates their type: positive for the same direction, negative for 
opposite directions. Bold letters highlight the flammability parameters: IGT, ignition time; HRR, peak heat release rate; EHC, effective 
heat of combustion and MLR, average mass loss rate. Other letters represent: FMC, foliar moisture content; CRV, curvature; FCO, 
form coefficient; AVR, surface-area-to-volume ratio; N, nitrogen; C, carbon; SS, soluble sugars; ST, starch; LI, lipids and TE, terpenes.   
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of HRR variance, from which 15% was shared (Fig. 2b). 
Chemistry also explained most of EHC and MLR variance 
(shared: 18 and 16%, uniquely 18 and 10%). Form and FMC 
explained the least variance for EHC and MLR (shared <8%, 
unique <4%; Fig. 2c, d). It is important to note that EHC 
variance explained by chemistry did not overlap (i.e. it is not 
redundant). Residuals for HRR, EHC and MLR ranged from 
76 to 79% suggesting that other variables not included in our 
study may explain more of their variance. 

Flammability components were correlated with most of 
the needles’ tested morphological and chemical characteris
tics. IGT had a strong negative correlation with AVR ratio 
(rrm = −0.42, d.f. = 87, P < 0.001) and positive with FMC, 
FCO, N and LI content (rrm ≤ 0.25; Table 3). Then, the more 
ignitable needles (i.e. low IGT) had higher AVR, were nar
rower, longer, drier, and had less N and LI. Peak HRR exhib
ited negative correlations with MC, FCO, N, but positive C, TE, 
and CRV (all with rrm ≥ 0.22; Table 3). EHC was positively 
correlated to starch (rrm = 0.33, d.f. = 87, P < 0.01) and 
lipid content (rrm = 0.31, d.f. = 87, P < 0.01). MLR had 
positive correlations with CRV, C, and TE content (Table 3), 
which means that needles consumed faster by fire were cur
vier and had more carbon and terpenes. 

Needle age and month of collection 

Old needles ignited significantly faster than new ones 
(rmANOVA, F = 45.69, d.f. = 2, P < 0.001) in the first 
2 months of collection (rmANOVA, F = 36.24, d.f. = 3, 
P < 0.001), but especially in June (rmANOVA, F = 28.21, 

d.f. = 6, P < 0.001; Supplementary Table S3). It took up to 
49.60 s (x̄, s.e. = 3.69) for the 0-year-old needles to ignite in 
June, whereas it occurred in less than 22 s for the 1- and 
2-year-old needles (Fig. 3a). Differences in ignitability due to 
age disappeared in August when all needles ignited under 16 s. 

The highest HRR was found in 1- and 2-year-old 
needles (rmANOVA, F = 16.19, d.f. = 2, P < 0.001), espe
cially 2-year-old needles in July (x̄ = 130 kW m−2, 
s.e. = 10.41), and the lowest in 0-year-old needles in June 
(x̄ = 63.10 kW m−2, s.e. = 3.10). HRR was the lowest for all 
needle ages in June but reached their maximum value at 
different months: 1-and 2-year-old needles in July, and 
0-year-old needles in August. Thus, month (rmANOVA, 
F = 11.23, d.f. = 3, P < 0.001) and interaction (rmANOVA, 
F = 2.80, d.f. = 6, P < 0.05) also had a significant effect on 
HRR; Fig. 3b, Supplementary Table S3). 

The EHC was similar between needle ages (0, 1, and 2 
years old) but varied depending on the month of 
collection (rmANOVA, F = 13.26, d.f. = 3, P < 0.05; Fig. 3c, 
Supplementary Table S3). During June and July, needles 
released almost three times more energy (x̄ = 11.30 kJ g−1, 
s.e. = 2.00) than in August and September (x̄ = 4.40 kJ g−1, 
s.e. = 1.05). 

The amount of FMC was higher in 0-year-old than 1= 
and 2-year-old needles, mainly during the first 2 months of 
collection (Fig. 4a). New needles exhibited a maximum FMC 
of 295% (x̄, e.e. = 35.7) in June and dropped to 129% in 
September (x̄, e.e. = 4.51), a level similar to older needles 
(~100%). FMC of needles, then, was significantly affected 
by age (F = 94.47, d.f. = 2, P < 0.001), month of collection 
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Fig. 2. Variance partitioning for each component 
of flammability of jack pine needles. Non-overlapped 
areas represent the unique variation explained by each 
variable (MC) or set of variables (chemistry and form). 
The significant differences of the unique variance 
explained are marked with an asterisk. Overlapped 
areas indicate common variance explained.    
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(F = 12.13, d.f. = 3, P < 0.001), and interaction (F = 13.99, 
d.f. = 6, P < 0.001). 

Form and chemical characteristics 

Age and month significantly affected the needles’ form 
(Fig. 4, Supplementary Table S4). New needles (0 years old 
in June) showed low curvature (x̄ = 0.30, s.e. = 0.002), 
high form coefficients (x̄ = 0.26, s.e. = 0.01) and low area- 
to-volume ratio (x̄ = 6.36, s.e. = 0.33), whereas the oppo
site was observed in older ones (Fig. 4b–d). Chemical content 
varied according to age and month of collection (Fig. 5, 
Supplementary Table S5). Needles’ growth during the grow
ing season and years led to increases in carbon and terpene 
content but a reduction of lipids (Fig. 5a, e, f). We identified 
50 different terpenes (36 monoterpenes, 12 sesquiterpenes 
and two diterpenes). The most abundant were α-pinene, 

β-phellandrene, borneol acetate, β-pinene, camphene, 
β-myrcene, 3-carene, linalool, germacrene D-4-ol, myrtenyl 
acetate, (+)-R-limonene and phytol. 

Starch content in older needles decreased over the months, 
eventually matching new leaves (from 7 to ~0.21%; Fig. 5c). 
Lipids fell consistently for needles of all ages as the growing 
season advanced (Fig. 5e), soluble sugars had a pattern of 
highs and lows (Fig. 5d), and nitrogen decreased drastically in 
0-year-old needles after June, matching the other needle ages. 
At the end of the growing season (September), the needles’ 
chemical characteristics were similar regardless of age. 

Discussion 

Ignitability, combustibility, sustainability and consumability 
reach their maximum at different times of the year and vary 
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with needle age, matching both natural developmental and 
seasonal stages of jack pine needles. Needles ignite and 
release energy faster at maturity, which is also when they 
are no longer significantly different physically or chemically. 
However, the total energy released responds to the shift of 
needle chemical composition between the early and late 
growing seasons regardless of their developmental stage. 
During the early season (i.e. June and July), the energy is 
three times the amount released later (e.g. August and 
September), a difference similar in magnitude between living 
and dry, dead needles of P. halepensis (~10 kJ g−1; Jervis 
and Rein 2016). There is an intrinsic potential for more 
intense crown fires in the early fire season, which is also 
the period with the region’s highest number of forest fires. 
However, weather and topography also modulate fire inten
sity at larger spatial scales. Nevertheless, although more 
research is needed to study the interactions between live 
foliage flammability and larger-scale factors, our findings 
highlight the importance of flammability studies of living 
foliage in a biological context. 

The form and chemical content of jack pine needles had a 
more substantial effect on flammability than foliar moisture 
content. We observed the lowest ignitability and combustibil
ity at higher FMC, consistent with similar experiments testing 
conifers and broadleaved species (Etlinger and Beall 2004;  
Weise et al. 2005; Jervis and Rein 2016). However, despite 
their significant correlations with FMC, two observations 
showed that FMC was not the only factor driving flammability. 
First, needle ignition occurred before their desiccation 

(also described by Pickett et al. 2010), contradicting the 
traditional combustion progression (Byram 1959). Second, 
the combustibility does not precisely track the monthly 
patterns of needle moisture content (cf. Philpot and Mutch 
1971). In fact, FMC in living conifer needles could contrib
ute to the sudden release of droplets (micro-explosions) 
mixed with volatile compounds that can heat and ignite 
adjacent needles (Darwish Ahmad et al. 2021; Fazeli et al. 
2022). Previous studies also acknowledged that leaves’ form 
and chemical content also affect flammability (Philpot and 
Mutch 1971; Weise et al. 2005; Jolly et al. 2012, 2016;  
McAllister et al. 2012; Jervis and Rein 2016). However, 
our analysis also allowed us to recognise the extent of 
influence of each set of variables on flammability and indi
cated a more minor role of FMC than we were expecting. 
These results suggest that under the conditions of a high- 
intensity crown fire, the effect of moisture content may be 
considered negligible on ignitability and combustibility 
(Weise et al. 2005; Fletcher et al. 2007; Alexander and 
Cruz 2013), or limited to ignitability (Ganteaume 2018) 
and the peak rate of energy release. This low contribution 
of FMC to flammable characteristics may explain the lack 
(or undetectable role) of this variable in crown fire behaviour 
models (Van Wagner 1998; Cruz et al. 2005; Rossa and 
Fernandes 2018). Given the preponderance of high-intensity 
crown fires in the Canadian boreal forest, performing more 
experiments on a broader scale and a larger number of species 
will help us determine the extent and type of influence FMC 
exerts on the flammability of living foliage of trees. 

Table 3. Repeated measures correlation coefficients (rrm, d.f. = 87, top-right) and their respective P-values (bottom-left) for the variables of 
flammability, form, and chemical content.                 

Variable IGT HRR EHC MLR FMC FCO CRV AVR C ST SS N LI TE   

IGT –  −0.30  0.32  −0.19  0.72  0.76  −0.31  −0.83  −0.43  −0.18  −0.13  0.81  0.00  −0.51 

HRR  0.00 −  0.25  0.29  −0.35  −0.41  0.30  0.27  0.35  −0.01  0.02  −0.37  −0.06  0.41 

EHC  0.00  0.02 –  −0.17  0.20  0.23  −0.10  −0.31  −0.15  0.27  −0.49  0.16  0.31  −0.14 

MLR  0.07  0.01  0.11 –  −0.30  −0.34  0.35  0.23  0.23  0.02  0.13  −0.16  −0.08  0.28 

FMC  0.00  0.00  0.07  0.00 –  0.74  −0.38  −0.74  −0.44  −0.25  −0.14  0.72  −0.11  −0.45 

FCO  0.00  0.00  0.03  0.00  0.00 –  −0.49  −0.81  −0.34  −0.36  −0.11  0.81  −0.17  −0.48 

CRV  0.00  0.00  0.37  0.00  0.00  0.00 –  0.34  0.19  0.17  0.09  −0.34  0.01  0.27 

AVR  0.00  0.01  0.00  0.03  0.00  0.00  0.00 –  0.34  0.15  0.06  −0.84  0.02  0.40 

C  0.00  0.00  0.15  0.03  0.00  0.00  0.08  0.00 –  −0.08  0.13  −0.23  −0.09  0.41 

ST  0.09  0.93  0.01  0.83  0.02  0.00  0.12  0.14  0.48 –  0.07  −0.28  0.70  0.07 

SS  0.25  0.87  0.64  0.21  0.19  0.31  0.42  0.55  0.23  0.54 –  −0.10  0.00  0.28 

N  0.00  0.00  0.12  0.13  0.00  0.00  0.00  0.00  0.03  0.01  0.34 –  −0.06  −0.34 

LI  0.96  0.57  0.00  0.44  0.29  0.11  0.93  0.87  0.40  0.00  0.99  0.58 –  –0.05 

TE  0.00  0.00  0.19  0.01  0.00  0.00  0.01  0.00  0.00  0.49  0.01  0.00  0.67 – 

Bold numbers indicate significant correlations (P < 0.05). Acronyms: IGT, ignition time; HRR, peak heat release rate; EHC, effective heat of combustion and 
MLR, average mass loss rate. Other letters represent: FMC, foliar moisture content; CRV, curvature; FCO, form coefficient; AVR, surface-area-to-volume ratio; 
N, nitrogen; C, carbon; SS, soluble sugars; ST, starch; LI, lipids and TE, terpenes.  
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Moisture content may indirectly influence ignitability 
by modifying jack pine needles form. Needles with high 
moisture content are more voluminous and rounder, which 
increases their thermal capacity and delays ignition. This 
observation is similar to that of Jolly et al. (2016), who 
also noted delayed ignitability at higher needle mass and 
density, which in turn was associated with higher FMC and 
starch contents in red and jack pine. Such associations might 
also explain the high redundancy of variance explained by 
FMC and form. The tight association between form and 
ignitability has allowed researchers to rate different 
species by their fire hazard, and to develop fire spread and 
severity prediction models based solely on leaf form traits 
(Montgomery and Cheo 1971; Papió and Trabaud 1990;  
Weise et al. 2005; Murray et al. 2013, 2020; Shen and 
Fletcher 2015). 

The chemical composition of jack pine needles is the 
main factor determining sustainability and consumability, 
and has a minor role in combustibility and ignitability. High 
needle carbon content boosts ignitability, combustibility 
and consumability. Carbon increment in new needles reflects 
the rise of lignin and cellulose, which form structural tissues 
(sensu lato structural carbons; Kozlowski et al. 1991). 
Although they reduce flaming times and energy release in 
lodgepole pine dry needles (Page et al. 2012), lignin is a 
source of high energy in the combustion of wood (White 
1987). More importantly, non-structural carbon like starch 
and lipids are strongly associated with sustainability. These 
high-energy compounds observed in many conifers, are more 
abundant during shoot expansion in the early growing sea
son, (Little 1970; Fischer and Höll 1991; Mandre et al. 2002;  
Hoch et al. 2003; Schoonmaker 2013) when their high 
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concentrations may increase needles’ flammable character
istics (Philpot and Mutch 1971; Page et al. 2012; Jolly et al. 
2016). This implies that jack pine needles have the potential 
to burn more intensely during the first half of the fire season. 

Terpenes tend to get immobilised in the needle tissues 
over time in the resin canals (Langenheim 1994), increasing 
the flammability of older leaves. In our study, they enhanced 
the consumability, combustibility and ignitability of living 
jack pine needles due to their inherent high heating value, 
low ignition temperature (flashpoint), and low ignitable con
centration (lower flammability limit; Carson and Mumford 
1994). In several species, a significant relationship exists 
between some terpenes and ignitability (de Lillis et al. 2009;  
Pausas et al. 2016; Romero et al. 2019; Della Rocca et al. 
2020; Guerrero et al. 2021), combustibility (Dewhirst et al. 
2020), and consumability of foliage (Owens et al. 1998). 
Moreover, terpene content can explain high percentages of 
variance with respect to flammability (19–24%; Della Roca 
et al. 2017). However, their role depends on the flammability 
parameter studied, their type (number of isoprene units and 
associated functional groups in their structure), season and 
developmental stage (Della Roca et al. 2017; Dewhirst et al. 
2020; Ganteaume et al. 2021). 

In the present study, the most abundant terpenes in jack 
pine needles are monoterpenes, which also play a significant 
role in the flammability of living foliage of Globularia aly
pum and Rosmarinus officinalis (Alessio et al. 2008; Pausas 
et al. 2016), 13 species of pines (including P. banksiana;  
Dewhirst et al. 2020), and several Mediterranean conifer 
species (Della Roca et al. 2017; Ganteaume et al. 2021). 
Needles emit terpenes and other volatile organic compounds 
when exposed to heat (Greenberg et al. 2006), which may 
have accelerated and caused ignition prior to needle desic
cation in our samples (Darwish Ahmad et al. 2021; Fazeli 
et al. 2022). We identified terpenes in our samples that are 
considered highly flammable (e.g. α-pinene; Raman et al. 
2016), and others that are recognised as supressors of flam
mable properties (e.g. β-pinene and α-humulene; Ganteaume 
et al. 2021) in other studies. Nevertheless, the suppressing or 
enhancing role of individual terpenes on flammability was 
beyond the scope of the present work. 

Both N and FMC are abundant in jack pine needles during 
shoot expansion due to the high physiological activity 
involving multiple proteins, enzymes, amino acids, and 
nucleic acids (Kramer and Kozlowski 1979; Vose and Ryan 
2002). At this stage, needles are less ignitable and combusti
ble than at later stages, but distinguishing the role between N 
or FMC cannot be asserted entirely. On the other hand, when 
only considering older needles, higher N concentrations 
might reflect different N fractions such as volatile flavonoids 
and phenolic precursors of lignin (Zakzeski et al. 2010), with 
highly flammable properties such as piperidines (Patnaik 
2007; Virjamo and Julkunen-Tiitto 2016). Further research 
is necessary to assert the role of more specific compounds in 
the flammability of jack pine needles. 

Although small-scale controlled experiments have been 
considered limited in their ability to explain field fire 
behaviour (Fernandes and Cruz 2012), the results obtained 
from them are valuable to cement our understanding of 
underlying factors influencing combustion. This information 
can potentially be used to improve mechanistic-based models 
of fire behaviour involving crown fire initiation, rate of 
spread, and energy release. These experiments have facilitated 
the rating of vegetation into flammable categories (Papió and 
Trabaud 1990; Dimitrakopoulos and Papaioannou 2001;  
Weise et al. 2005), the management of the wildland–urban 
interface (White and Zipperer 2010; Simeoni et al. 2012;  
Ganteaume 2018; Krix et al. 2019; Murray et al. 2020), 
explained fire activity patterns at continental scales (Prior 
et al. 2017), and even allowed for interpretation of paleo
logical reconstruction of fire activity (Belcher 2016). 
Furthermore, needle form and chemical characteristics in 
the foliage and litter bed have been employed to explain and 
develop fire spread and severity models (Schwilk and Caprio 
2011; Torero and Simeoni 2010; Jolly et al. 2016; Grootemaat 
et al. 2017). Understanding leaf-level flammability has utili
tarian applications in fire management. 

Additional physical traits of jack pine trees should also be 
considered to explain their flammability at a landscape 
scale. Needle position, distribution and density in the twig 
and branches, needle age relative proportion, and crown 
architecture (e.g. height, bulk, and density) all modify the 
air/fuel mix in the crown and canopy, which has an important 
influence on landscape flammability (Rothermel 1972; Van 
Wagner 1977; Bond and Midgley 1995; Agee 1996; Schwilk 
2003). For example, aggregated narrow, long needles provide 
high air circulation, enhancing their ignitability and combus
tibility, compared with shorter, wider needles that form more 
compact foliage (Scarff and Westoby 2006; Kane et al. 2008;  
Cornwell et al. 2015; Schwilk 2015). On the other hand, 
narrow needles spaced on the twigs spruce are highly ignit
able, but the same needles generate a very compact fuel bed 
with low ignitable potential (Ganteaume 2018). More 
research is required at different spatial scales to discern the 
influence of chemical and physical traits on fire behaviour as 
additional tree features could enhance or counteract the effect 
of needle flammability 

Conclusions 

Far from behaving as a simple high moisture fuel, the flam
mability of living foliage is astoundingly intricate due to the 
complex relationships among the variables typical of 
living systems. We were able to experimentally determine 
the significance of living needle traits and their natural 
variation over the growing season on different flammable 
characteristics. Surprisingly, foliar moisture was not the 
primary driver of needle flammability, as is commonly 
assumed. Needle form significantly affected ignitability, 
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whereas chemical composition affected combustibility and 
consumability. Our results suggest indirect effects of moisture 
content on flammability through form and chemical composi
tion, but the nature of these interactions is still misunderstood. 
We advise studying vegetation fuels with an ecological 
approach, which will benefit wildland fire research and help 
us to understand the processes at finer spatial scales and 
improve fire behaviour modelling. 

Supplementary material 

Supplementary material is available online. 
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