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A conservation-significant threatened mammal uses fire 
exclusions and shifts ranges in the presence of prescribed 
burning 
Leticia F. PovhA,* , Nicole WillersB , Jill M. ShephardA and Patricia A. FlemingA

ABSTRACT 

Background. Understanding how animals change their use of space following prescribed burning 
is essential for effective conservation management, particularly a threatened species such as the 
quokka (Setonix brachyurus). Aims. To determine how individual quokkas change their home 
ranges following burns. Methods. The movement patterns of 20 quokkas were tracked before 
and after prescribed burns between 2018 and 2020. Home-range area was calculated for each 
individual, and behavioural change point analysis was carried out to determine whether they 
changed their space use after the burns. Key results. Six quokkas that had previously resided in 
areas that were prescribed burned, shifted their ranges and moved into the fire exclusions, 
avoiding the burn areas for an average of 105 ± 65 days. After 3 months, these quokkas spent no 
more than 2% of their time in the burn areas. By contrast, quokkas inhabiting fire exclusion and 
control sites did not show any change in their space use. Conclusions. This study highlights the 
importance and proximity of appropriately sized fire exclusions to ensure that populations of 
species dependent on dense vegetation can be retained. Implications. Fire exclusion areas are 
an important part of the planning of prescribed burns to retain habitat for fauna species that rely 
on dense cover for refuge and food.  

Keywords: conservation, fire management, home range, prescription burning, quokka, 
survival, threatened species, wildlife management. 

Introduction 

Australia has recently experienced some of the worst wildfires in its history (Teague et al. 
2010; CSIRO 2020; Jalaludin and Morgan 2021). Fire has played a fundamental role in 
the evolution of Australia’s biota and continues to be a key driver of many of its 
ecosystems (Bradstock et al. 2012). However, the issue for biodiversity conservation is 
inappropriate fire regimes and recent increases in fire intensity in a drying climate. With 
changes in climate, the number of extreme weather days will keep increasing (Di Virgilio 
et al. 2019), and there will be greater risk of wildfires (van Oldenborgh et al. 2021) that 
are likely to burn with greater intensity, impacting trees and vegetation that provide 
important habitat for fauna species. Landscape fragmentation (e.g. due to clearing for 
agriculture and mining) further contributes to losses due to fire, because animals cannot 
readily move away from burned areas to find appropriate habitat. 

Prescribed burning is the main strategy to manage flammable landscapes and reduce 
the intensity of wildfires (Howard et al. 2020; Radford et al. 2020). Because of their 
timing (usually autumn or spring), compared with wildfire, prescribed burns should have 
lower intensity, consume less vegetation and create a more patchy mosaic of burned and 
unburned areas that should allow wildlife to find unburned habitat to survive. 
Prescription burning can also promote biodiversity through the regeneration of vegeta-
tion seral stages and increasing habitat heterogeneity (Valkó et al. 2016; Eales et al. 
2018; He et al. 2019; Radford et al. 2020) (but see Pastro et al. 2011; Berry et al. 2015;  
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Bradshaw et al. 2018). As well as reducing risk of large-scale 
intense wildfire for the protection of lives and property, pre-
scribed burning is therefore used as an important management 
tool to protect vegetation complexity and regenerate vegeta-
tion to provide habitat and food for fauna (Penman et al. 
2011; Flanagan-Moodie et al. 2018; Howard et al. 2020). 

A few studies have shown that mammals can survive fire 
itself. For example, Garvey et al. (2010) reported that 
swamp wallabies (Wallabia bicolor) survived a prescribed 
burn in Muogamarra Nature Reserve, New South Wales by 
moving into creek lines to avoid fire, and even crossing the 
fire front to move into burned ground. In another study,  
Vernes (2000) recorded comparable survival of the northern 
bettong (Bettongia tropica) at burned and unburned sites in 
north-eastern Queensland, although their mechanism of sur-
vival was not stated. In contrast, although robust studies 
that directly measure mortality of mammals during higher 
intensity fires are rare, direct mortality from fire (heat, 
smoke) has been inferred as the cause of death for a number 
of species (Ritchie et al. 2008; Penman et al. 2011; Berry 
et al. 2015; Flanagan-Moodie et al. 2018; Santos et al. 
2022). Whether mammals burrow, hide/wait or flee is likely 
a result of many factors, including their typical habitat/ 
refuge area, their size and mobility, environmental/weather 
cues and the scale/intensity of the fire. 

There are also longer-term effects of fire on fauna. Burned 
areas can deprive survivors of food resources or thermal 
shelter, and there can be minimal protective cover from 
predators in these landscapes (Burbidge and McKenzie 
1989; McGregor et al. 2014). Reduced survival shortly after 
fire due to reductions in food and shelter is the most fre-
quently reported mechanism of fire-related decline (Santos 
et al. 2022). Medium-sized mammals are particularly at risk 
because they are less mobile and less able to find food or 
shelter (Gill et al. 2002). Mosaics of burned and unburned 
vegetation are therefore important for the maintenance of 
post-fire populations (Penman et al. 2007; Radford et al. 
2015). For example, the long-nosed bandicoot (Perameles 
nasuta) is resilient to patchy burns that leave a mosaic of 
burned and unburned habitats (Chambers and Dickman 2002;  
MacGregor et al. 2015). Shaw et al. (2021) found that 
unburned patches of vegetation were important for the sur-
vival of the pale field rat (Rattus tunneyi) after prescribed fire 
in tropical savannas in the central Kimberley, Western 
Australia. At an even more localised scale, unburned grass-
trees that escaped fire provided valuable diurnal refuge for 
mardo (Antechinus flavipes leucogaster) in southwest Western 
Australia, and these plants were used disproportionately com-
pared with the rest of the landscape (Swinburn et al. 2007). 
The relative importance of unburned patches for refuge is 
likely to depend on the degree to which they provide 
resources that are otherwise unavailable within the surround-
ing burned area (Penman et al. 2007; Robinson et al. 2014). 

Faunal use of habitat can vary in relation to temporal 
changes, such as seasonal differences (Couriot et al. 2018) or 

drought (Yospin et al. 2015). Similarly, due to substantial 
alterations in forest structure and the spatiotemporal distri-
bution of key resources following fire (Clarke 2008; Wiggins 
et al. 2010; Styger et al. 2011), mammal assemblages often 
change in relative abundance and spatial distribution 
(Fischer et al. 1997; Morris et al. 2011). Studies in arid 
Australia suggest that some small mammal species avoid 
burned areas, moving to alternative habitat (Read 1984;  
Dickman et al. 1995; Anstee et al. 1997; Letnic and 
Dickman 2005). For example, brush-tailed bettongs 
(Bettongia penicillata) moved considerable distances to nest 
at the edge of a burn, resulting in permanent shifts in loca-
tion (Christensen and Leftwich 1980). Similarly, northern 
bettongs relocated their home ranges from areas of grassy 
tussocks and logs to rocky areas and remnant patches of 
unburned vegetation (Vernes and Pope 2001). By contrast 
with these studies showing avoidance of burned areas, 
tracked swamp wallabies (Wallabia bicolor) selected burned 
over unburned habitat after a prescribed burn in a peri-urban 
area of north Sydney, suggesting that the impact of the low- 
intensity burn on habitat quality was not sufficient to war-
rant a shift in ranges (Garvey et al. 2010). It is possible that 
fire could even directly benefit herbivorous and other species 
by increasing availability or quality of resources, for instance 
higher nutrient plant growth or a post-fire pulse of grasses 
and herbs (Christensen and Lewis 1980; Ritchie et al. 2008;  
Haslem et al. 2011; Eby et al. 2014). 

Prescribed burns are highly variable in severity across time 
and space, causing different impacts on vegetation structure 
and therefore the degree to which food and shelter resources 
of fauna species are affected. Fauna also responds to pre-
scribed burning in different ways, according to their biology, 
ecology, and behaviour, as well as alternative habitat availa-
bility. The impacts of prescribed burning on immediate and 
long-term survival and behavioural process such as movement 
and resource selection of Australian fauna species therefore 
cannot be broadly generalised. More detailed information 
about the mechanisms driving fauna responses to fire is 
required to predict the likely impacts of prescription burning. 

The quokka (Setonix brachyurus) is a ‘Vulnerable’ wallaby 
species endemic to the south-west Western Australia mainland 
and two offshore islands (Kitchener 1995; Burbidge and 
Woinarski 2020). Small, fragmented quokka populations in 
the Northern Jarrah Forest lie on the inland edge of the 
species’ geographic range, and larger connected populations 
are found to the southern part of their range on the mainland 
(Spencer et al. 2019). As a habitat specialist, in the Northern 
Jarrah Forest, quokkas spend most of their time refuging in 
dense riparian vegetation and foraging in swamp systems and 
adjacent open forest (Hayward 2005; Hayward et al. 2005). In 
the southern forests, riparian vegetation is used exclusively for 
movements between habitat patches, with animals spending 
40% of their time in this ecotype (Bain et al. 2020). Their 
mean overall home range sizes are reportedly disparate 
between Northern Jarrah Forest (6.4 ± 0.8 ha) and the 
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southern forest (71 ± 5.8 ha), but in both areas the largest 
home ranges were reported in nocturnal periods and in 
autumn (Hayward et al. 2004; Bain et al. 2020). The optimal 
post-fire age of the dense riparian vegetation is at least 
5 years, and up to 25 years or longer, depending on the loca-
tion/climate and vegetation type (Hayward 2002; Hayward 
et al. 2007). Vegetation density typically declines after 
24 years and can be burned to regenerate senescing vegetation 
that no longer has sufficient structure and density to provide 
protection (Hayward 2002). Recent work carried out across 
the southern forests showed that quokkas are dependent on a 
mosaic of fuel ages that provide suitable vegetation for both 
food and refuge (Bain et al. 2015; Bain et al. 2016). Finding a 
balance of fire age mosaic is therefore an important conserva-
tion management consideration. In the fragmented Northern 
Jarrah Forest, managing the fire age of their habitat requires 
considerable planning to ensure that alternative appropriate 
habitat is retained within the home ranges of individuals 
impacted by prescribed burns. Understanding how quokkas 
respond to fire is required if we are to ensure habitat is 
appropriately managed for their conservation. 

We tracked 20 mainland quokkas with VHF and GPS 
collars before and after three prescribed burns and com-
pared their movement with unburned sites as treatment 
controls – comparing their responses at the time of the 
fire, immediately-post fire, and over a longer time frame. 
First, we examined whether quokkas were directly exposed 
to the fires and whether they survived prescription burning 
(i.e. their immediate survival). Second, we examined 
whether the animals immediately shifted the area that 
they used for diurnal rest sites or nocturnal foraging at the 

time of the fire. We predicted that the loss of vegetation cover 
would result in avoidance of the burned site for diurnal 
refuge, and that the loss of plant species would cause a 
necessary shift in their foraging activities. Third, we tested 
whether quokkas changed their home range area after the 
fires as an indication of whether they could still secure suffi-
cient resources for their medium-term survival. We predicted 
that foraging resources would be more scarce post-fire, 
requiring greater area covered to meet their energetic needs. 

Methods 

This project was approved by Murdoch University Animal 
Ethics Committee (R3058/18) and Department of 
Biodiversity, Conservation and Attractions (FO25000082-2). 

Study area 

This study was undertaken in the Northern Jarrah Forest, 
Western Australia (Fig. 1). The research was concentrated 
on five forest blocks, which total 1974 ha of quokka habitat. 
One control site (Chandler) was not burned during this 
study and was monitored at the same time as three of the 
treatment sites were burned. One site (Marrinup) was not 
burned during the study period and there was no fire treat-
ment simultaneously measured. There was also an internal 
control at each of the three prescription burn treatment 
sites, with each having both a burn area and a fire- 
exclusion area (adjacent unburned habitat). The area of 
burn at each study site was manually mapped and overlaid 
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Fig. 1. Study location at five sites, sites layout and 
treatment areas. The three prescribed burn treat-
ment sites had both a burn and an exclusion area 
(adjacent unburned habitat). The prescribed burns 
were undertaken between October 2018 and 
October 2019. The area of burn at each study site 
is shown according to quokka habitat area, not total 
area of the prescribed burns. One control site 
(Chandler) and one site (Marrinup) were not burned 
during the study period.    
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with the quokka location data using ArcGIS 10.8.1 (ESRI, 
San Diego, CA). 

Trapping and tracking devices 

Between July 2018 and September 2019, quokkas were cap-
tured with Thomas soft-wall traps (360 × 480 × 800 mm 
W × H × L; Sheffield Wire Works, Welshpool, Western 
Australia). Quokkas were sexed and weighed (±0.01 kg; 
HDB 5K5N; KERN & Sohn, Balingen, Germany), microchipped 
(1.4 × 8.5 mm Bio-glass Parylene coating; SwissPlus ID 
Group, Queensland, Australia), and body measurements 
were recorded. All handling was undertaken by experienced 
ecologists. Adult quokkas weighing >2 kg were fitted with a 
tracking collar without the aid of anaesthesia (to reduce the 
possibility of attaching the collar too tightly). In the first year, 
quokkas were fitted with very high frequency (VHF) collars 
(model M1820; Advanced Telemetry Solutions, Australia). 
Subsequently, individuals were fitted with collars that had 
a store on-board global position system (GPS) system 
(LiteTrack30 model; Sirtrack, New Zealand) that could be 
located via VHF signal and have its GPS data remotely down-
loaded. Quokkas were then released at point of capture. 

Radio-tracking 

Individuals with VHF collars were tracked twice per week, 
using a R1000 receiver and a 6-element Yagi antenna 
(Sirtrack, New Zealand) from fixed telemetry stations posi-
tioned at regular intervals along access tracks running through 
the study sites. Upon locating each VHF collar signal, compass 
bearings to the strongest signal direction were taken from a 
minimum of three stations and less than 10 min apart. Animal 
location coordinates were generated from telemetry station 
coordinates and direction data with Locate III (Nams 
2006). Location data for VHF collared individuals was 
collected during daylight (0600–1800 hours) and at night 
(1800–0600 hours). 

GPS collars were programmed to take four fixes per day, 
with rolling intervals in multiples of 7 h. To download the 
data, once a GPS device was located (secondary VHF signal 
detected with Yagi antenna), the animal was approached 
quietly on foot and data were downloaded remotely with a 
portable PinPoint Commander (Sirtrack, New Zealand). 

Data analyses 

Tracking data were added to Movebank (Wikelski et al. 
2020) and analysed with the ‘CTMM’ package (v0.5.5) 
(Calabrese et al. 2016) in R. Calibration data from two 
retrieved GPS collars that had fallen off and were stationary 
were used to estimate the user equivalent range error 
(UERE) for the GPS collars. Variograms were used to iden-
tify range-resident individuals, where estimated home-range 
area reaches an asymptote. Movement models were fitted to 
each individual’s spatial data separately, using maximum 

likelihood (Fleming and Calabrese 2017) to select the best 
match to each individual dataset among five possible move-
ment models using Akaike information criterion (AIC) values 
(Akaike 1973). The best model fit was then applied to calculate 
the Kernel Density Estimation (KDE) for 95, 75, and 50% ranges 
(Calabrese et al. 2016) for each individual as their whole data 
set by month, and for nocturnal (1800–0600 hours) and diurnal 
(0600–1800 hours) data subsets by month. 

Home-range areas were calculated separately for each 
individual, and the data for nocturnal and diurnal home 
range areas were compared by Mann–Whitney–Wilcoxon 
Test (Shapiro–Wilk test indicated that these data did not 
conform to a Gaussian distribution; P < 0.05). To test 
whether quokkas shifted their diurnal rest sites or nocturnal 
foraging activity after prescription burning, nocturnal and 
diurnal Log10-transformed 95% home-range areas for each 
month before and after the burn (predictor variable), includ-
ing individual ID as a random factor to account for repeated 
measures, were compared by generalised linear mixed- 
model (GLMM) using lmer in ‘lme4’ package (Bates et al. 
2014) in R. We used the ‘DHARMa’ package (Hartig 2020) in 
R to confirm the residual fit of the model. 

To test whether quokkas shifted their home ranges at the 
time of the fire, movement paths were segmented into inter-
vals corresponding with changes in the use of habitat using 
the ‘segclust2d’ package (v0.2.0) (Patin et al. 2020) in R. 
This process uses a dynamic programming algorithm to find 
the best segmentation that matches the data and identifies 
the number of segments, given a criterium based on the 
value of the second derivative of the penalised likelihood 
(Lavielle 1999). We compared the date of the change in 
segments with the date of the prescribed burn for all indivi-
duals at each site and compared the numbers of animals that 
shifted or did not shift their range at the time of the burn for 
burned and unburned sites using a Fisher’s exact test. 

We used ArcGIS analysis to determine the average over-
lap between the animal’s space use and the planned burn 
areas. For those animals that shifted home range, we calcu-
lated the difference in the home range centroids of their pre- 
and post-burn GPS coordinates. We projected their shape-
files in R using ‘raster’ and created centroids with ‘rgeos’. 
Following this, we calculated distances between each indi-
vidual centroid and locations of interest. 

To determine how long quokkas avoided burned sites, we 
identified the date after the burn when the first location 
datapoint was recorded within the mapped burn area. To 
determine how much time each quokka spent within the 
burned areas, we calculated the percentage of nocturnal and 
diurnal location datapoints within the burned areas before 
prescribed burns, and from 3 to 7 months after burns (using 
ArcGIS analysis). 

To test whether quokkas that had shifted their ranges 
used a greater area after the fires, we carried out a GLMM 
comparing Log10-transformed home range area data calculated 
each month (for 95, 75, and 50% kernel density estimates, 
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KDE) before and after the burn (predictor variable) and includ-
ing individual ID as a random factor to account for repeated 
measures using lmer in ‘lme4’. We used the ‘DHARMa’ package 
to confirm the residual fit of the model. 

As a result of a 1-year delay in the prescribed burning 
at Marrinup site, quokkas Q19 and Q20 were not equipped 
with a collar during the prescribed burning at this site and 
were therefore not added to the segmentation analysis. 
Furthermore, both quokkas received a tracking device only 
a few days before the burns were carried out at Churchman 
and Wungong sites, so the Marrinup animals could not be 
used as formal control for comparison with the Churchman 
and Wungong individuals (i.e. to control for potential changes 
in home range area due to seasonal or weather influences). 

Statistical analyses were performed in R (version 4.0.3). 
Significance values for all tests were set at α = 0.05, and 
values of response variables are reported as means ±1 
standard deviation (s.d.). 

Results 

Were quokkas directly exposed to the fires and 
did they survive prescription burning? 

In total, 20 male quokkas were successfully tracked: 11 in 
2018 (nine using VHF collars, two with GPS collars) and nine 
between 2019 and 2020 (GPS collars). Two mortalities 
occurred before the prescribed burns: one of natural cause 
(in 2018) and the second was a roadkill (in 2020). Of the 
remaining 18 collared quokkas, no mortality occurred during 
or after the prescribed burns, with individuals tracked an 
average of 7.3 ± 2.7 months post-burns (Table 1). Two tracked 
individuals (Q15, Q16) were directly exposed to the prescrip-
tion burns; the remaining four animals that were within burn 
treatment sites were known (from tracking data) to not be 
within the burn at the time of the prescribed burns. 

Did quokkas shift their home range after 
prescription burning? 

In total, 9905 locations were used to estimate home range 
areas, with an average of 453 ± 297 independent locations 
per quokka (Table 1). The mean 95% KDE home-range size 
for 20 male quokkas in the Northern Jarrah Forest was 
75.2 ± 59.7 ha, the 75% KDE was 28.8 ± 24.3 ha, and the 
core home-range area (50% KDE) was 13.0 ± 11.8 ha. 
Nocturnal home ranges averaged 36% larger than diurnal 
ranges but there were no statistically significant differences 
in diurnal and nocturnal for any of the KDE isopleth areas. 
There was also no significant difference in the pre- and post- 
burn nocturnal (i.e. foraging) areas for any of the KDE 
isopleths (Table 2). 

Segmentation analysis revealed that none of the seven 
quokkas at the control sites, and only one of five quokkas 

using fire exclusions areas within burn treatment sites 
(i.e. unburned habitat adjacent to burn areas), shifted their 
home ranges during the study. By contrast, all six quokkas at 
burn treatment sites moved away from the burn area (Fig. 2). 
Segmentation analysis indicated that this shift happened on 
the same date as the prescribed burns. The difference in 
responses between control/fire exclusion and burn treat-
ments was statistically significant (Fisher’s exact test com-
paring 1/12 vs 6/6, P < 0.001). The average overlap 
between the animal’s space use and the planned burn area 
averaged 44 ± 36% of location fixes pre-burn, compared 
with only 5 ± 4% of location fixes to the same area post- 
burn. All three quokkas (Q8, Q10, Q11) using sites within 
the planned burn area at the Gordon site (76, 13 and 27% 
overlap with the planned burn area) shifted their ranges 
post-burn (9, 0 and 7% overlap with the burn area) and 
their range centroids were altered (Fig. 2a–c). 

Of the six quokkas affected by the prescription burning, 
two were directly exposed to the prescription burns. At the 
Wungong site, Q15 had a 37% overlap with the planned burn 
area and was in the burning area during the aerial ignition 
(Fig. 2f). Q15 survived the fire in a small area <1 ha of 
unburned vegetation, moved 1.5 km to the fire exclusion site 
3 days after the prescribed burn, and made minimal use of 
the burn area post-fire (7% overlap with the burn area). Over 
the next 6 months, Q15 had 4% of his diurnal and nocturnal 
locations in burn area. At the Churchman site, the home 
range of Q16 pre-burn had 96% of overlap within the 
planned burn area (Fig. 2d). During the burn, Q16 moved 
to adjoining unburned habitat, across a road, where he 
remained for 8 months (8% overlap with the burn area) 
post-burn. Three months post-burn, Q16 made irregular 
visits to the burned area at night (1% of locations) and to 
unburned borders (5% of locations). After 7 months, the 
percentage of diurnal and nocturnal visits to the burned 
area increased by 1 and 3% respectively (Table 3). 

Four quokkas were not within the burn area at the time of 
ignition but had home ranges that overlapped the burn area 
and shifted their home ranges away post-burn. At the Gordon 
site, Q8 persisted for 6 months in the fire-exclusion area and 
did not spend any daytime or night-time in the burned area; 
460 days after the prescribed burn, this male undertook a 
substantial move to an unburned site 10 km away, where it 
established a new range and remained for 7 months (con-
firmed by subsequent tracking). At this same site, two other 
quokkas (Q10 and Q11) shifted their range to the fire exclu-
sion post-fire, where they remained for 7 and 6 months. Q10 
did not spend any daytime or night-time in the burned area. 
Q11 made irregular visits to the burn area 3 months post- 
burn; 2% of his nocturnal locations were with the burn area 
and 4% within the unburned border (Table 3). At the 
Wungong site, pre-fire Q14 had an 11% overlap with 
the planned burn area. He shifted his range and did not use 
the burn area (0% overlap with the burn area) over the next 
7 months post-burn (Fig. 2e). Over time, 1% of nocturnal 
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Table 1. Site locations, type of burn treatment, and numbers of quokkas (Setonix brachyurus) tracked across five sites in the Northern Jarrah Forest, Western Australia.               

Site Treatment Quokka 
ID 

Dates tracked, number of fixes, % in burned area Tracker Shifted home 
range at the 
time of fire 

Pre-burn Post-burn 

Dates tracked n fixes % Dates tracked n fixes %   

Chandler 
(control) 

Not-burned Q1 29/08/2018 26/10/2018 31 0 31/10/2018 26/03/2019 93 0 VHF No 

Q2 22/08/2018 23/10/2018 19 0 30/10/2018 13/03/2019 54 0 VHF No 

Q3 28/08/2018 25/10/2018 40 0 30/10/2018 17/09/2019 73 0 VHF No 

Q4 1/09/2018 26/10/2018 69 0 30/10/2018 26/02/2019 109 0 VHF No 

Q5 23/09/2018 25/10/2018 43 0 31/10/2018 28/03/2019 99 0 VHF No 

Q12 10/08/2019 26/09/2019 64 0 09/10/2019 06/01/2020 291 0 VHF /GPS No 

Q13 26/09/2019 4/10/2019 30 0 6/10/2019 3/12/2019 188 0 GPS No 

Gordon Not-burned (fire 
exclusion) 

Q6 25/09/2018 25/10/2018 55 0 29/10/2018 3/03/2019 97 0 VHF No 

Q7 1/08/2018 25/10/2018 65 0 31/10/2018 10/03/2019 100 0 VHF No 

Burned (prescribed 
burning, manual 
ignition) 

Q9 4/09/2018 26/10/2018 186 3 29/10/2018 4/12/2018 147 1 GPS No 

Q8 27/08/2018 24/10/2018 43 76 31/10/2018 21/01/2019 26 9 VHF Yes 

Q10 30/08/2018 26/10/2018 77 13 31/10/2018 12/03/2019 108 0 VHF Yes 

Q11 30/08/2018 26/10/2018 281 27 30/10/2018 22/01/2019 420 7 GPS Yes 

Churchm-
an 

Not-burned (fire 
exclusion) 

Q17 1/04/2019 26/09/2019 118 0 28/09/2019 24/04/2020 682 0 VHF /GPS No 

Q18 1/04/2019 26/09/2019 178 0 28/09/2019 29/04/2020 214 0 VHF /GPS No 

Burned (prescribed 
burning, manual 
ignition) 

Q16 1/04/2019 25/09/2019 101 100 28/09/2019 5/04/2020 596 8 VHF /GPS Yes 

Wungong Burned (prescribed 
burning, aerial 
ignition) 

Q14 2/09/2019 5/10/2019 100 11 9/10/2019 9/12/2019 193 0 VHF /GPS Yes 

Q15 6/09/2019 4/10/2019 97 37 9/10/2019 8/12/2019 185 7 GPS Yes 

Marrinup Not-burned 
(postponed) 

Q19 13/09/2019 22/01/2020 393 0 – –  0 GPS – 

Q20 04/10/2019 10/08/2020 912 0 – –  0 GPS – 

The tracking dates for VHF and GPS data, the Dashed line indicates individuals tracked using VHF collars as well as GPS collars trackers. The green boxes show individuals with no overlap within the 
planned burn area pre-burn and post-burn. The box colours ranging from yellow (low overlap) to red (strong overlap) show the overlaps with planned burn area pre-burn and post-burn, and consequently 
shifts in home range after prescribed burn.  
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locations were within unburned borders. After 6 months, he 
visited the burned area (1% locations) and the border visits 
increased by 5% (Table 3). 

Did quokkas change their home range area after 
prescription burning? 

There was no significant change in the home range areas 
of animals that shifted their home ranges after prescribed 
burns (50% KDE: F1,53 = 0.159, P = 0.692; 70% KDE: 
F1,53 = 0.083, P = 0.774; 95% KDE: F1,53 = 0.018, 
P = 0.894; Fig. 3). 

Discussion 

While previous studies have examined fire chronosequences 
(Hayward et al. 2005; Dundas 2013; Bain et al. 2016) or the 
effects of wildfire on quokkas (WWF 2016), our study is the 
first investigation of the impact of prescribed burning on 
the movement ecology of individual quokkas. Individuals 
with tracking devices survived fire during the prescribed 
burns. Post-burn, quokkas used the defined fire exclusion 
areas or nearby unburned habitat, resulting in home-range 
shifts for six individuals that had occupied sites that were 
burned during the prescribed burns. 

Table 2. Summary of the diurnal and nocturnal 50, 75, and 95% Kernel Density Estimation home range areas used by quokkas (Setonix 
brachyurus) across five sites in the Northern Jarrah Forest, Western Australia, comparing (a) between day and night, and (b) total home range 
area (i.e. diurnal and nocturnal combined) pre- and post-burn.      

KDE home 
ranges (%) 

Diurnal (% within 25 m of 
the stream zone) 

Nocturnal (% within 25 m of 
the stream zone) 

Comparison diurnal 
and nocturnal areas   

(a) Diurnal vs nocturnal home range areas  

50 15.6 ± 24.0 ha (74%) 21.5 ± 31.0 ha (41%) U23 = −2.7, P  = 0.093   

75 31.8 ± 46.3 ha (25%) 43.4 ± 59.8 ha (56%) U23 = −3.1, P = 0.136  

95 72.3 ± 98.2 ha (1%) 96.6 ± 124.0 ha (3%) U23 = −3.2, P = 0.172 

(b) Pre-burn vs and post-burn overall home range areas  

50 F1,49 = 0.173, P = 0.679    

75 F1,49 = 0.136, P = 0.714    

95 F1,49 = 0.183, P = 0.671   

Numbers in brackets are the percentages of these locations within 25 m of the stream zone.  
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Fig. 2. Response of six mainland quokkas (a–f) to prescribed burns (red rectangles) derived from segmentation analysis showing 
each individual (resided or visited often burning site) home-range overlaps before (red), changes after prescribed burnings (blue), and 
centroid shifts (m) after burns.    
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Were quokkas directly exposed to the fires and 
did they survive prescription burning? 

Although there were only six tracked quokkas directly 
affected by the fire in the present study (i.e. residing within 
the boundaries of the burn area at the time of the burn), 
limiting our ability to extrapolate beyond the scope of the 
present study, we found no evidence for direct mortality 
caused by three prescribed burns monitored in the present 
study. Our results may be attributable to the presence of 
planned and successfully implemented fire exclusions in all 
monitored prescription burns. Three previous studies have 
similarly found no direct mortality during and immediately 
after burns for swamp wallabies, long-nosed bandicoots, and 
northern bettongs (Vernes and Pope 2001; Garvey et al. 
2010; Hope 2012). A recent meta-analysis testing fire char-
acteristics (fire type, fire severity, fire regime) and animal 
traits (body mass, ecological attributes, and vertebrate class) 
showed that only fire severity affected animal mortality, 
with a greater proportion of animals being killed by high- 
than low-severity fires (Jolly et al. 2022). Taken together, 
these results suggest that because prescribed fire generally 
burns with less intensity than wildfire (Christensen and 
Lewis 1980; Begg et al. 1981; Legge et al. 2008; Conner 
et al. 2011; Morris et al. 2011; Leahy et al. 2015), managing 
the intensity of burning needs to be prioritised. 

Naturally unburned areas resulting from either topogra-
phy, moisture differentials, or fire behaviour may act as 
short-term refugia for small mammals (Garvey et al. 2010;  
Robinson et al. 2013; Fordyce et al. 2016; Shaw et al. 2021). 
However, with an ongoing drying trend and less edaphic T
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moisture barriers, larger areas of the landscape will be 
vulnerable to fire, making patchy burns less achievable 
without careful planning (Williams et al. 2009; Bain et al. 
2016). In addition, fire managers should not depend on such 
fortuitous or occasional unburned areas, because they are 
unlikely to offer sufficient alternative habitat for mid- to 
long-term refuge and forage, especially for larger mammals 
and habitat specialist such as the quokka. Instead, strategi-
cally planned fire exclusion areas are likely to become a 
necessary conservation tool, particularly for fragmented 
populations, and will need to provide sufficient habitat to 
preserve populations over time, relative to the size of the 
species and population. 

Despite the most careful planning, fire behaviour on the 
day of burning can easily increase the distance between 
animals and safety, and consequently their survival. In the 
present study, the fire exclusion area at the Gordon site was 
across a track from the burn area (i.e. less than 10 m away). 
Immediately after manual fire ignition, quokkas in the burn 
area could therefore move into the adjacent fire-exclusion 
area, which offered the same habitat in a continuous creek 
line. Where the distance to unburned habitat is greater, or 
largely dissected either by roads or fire breaks, it may 
inhibit or delay access to this habitat. For example, the 
Wungong site was aerially ignited in open forest, between 
exclusion and burning sites, and during the burn one of the 
two collared quokkas remained at the burned site in a small, 
unburned patch. Days after, he managed to move to the 
exclusion area. The operational methods of implementing 
fire, wind direction, and fire behaviour are also likely to 
influence how useful a fire-exclusion area will be as refuge 
for animals. 

Animals may also elect to remain in known habitat rather 
than move to planned fire exclusions. At the Churchman 
site, the planned fire exclusion (containing a population of 
quokkas) was 2.5 km away from the burn area and was not 
used by the animal present at the burn area (Q16), which 
instead moved into closer suitable adjacent habitat that was 
part of the same creek system. Similarly, Hope (2012) 
reported that a long-nosed bandicoot slowly advanced into 
unburned vegetation, but when reaching the end of its 
known home range, avoided the unknown habitat and 
instead back tracked into the fire, seeking refuge in a boul-
der pile. Because animals may be unwilling to move to 
safety beyond their home range, particularly where habitat 
is fragmented or not continuous, it is crucial to plan proxi-
mal fire exclusions that support similar habitat to the burn 
area to provide appropriate resources during and post-fire. 

Did quokkas shift their home range after 
prescription burning? And if so, how long did they 
avoid the area? 

Quokkas affected by the prescribed burns shifted their home 
ranges in response to fire and did not use the burn area for at 

least 6 months post-fire. This result supports observations 
that southern forest quokkas (WWF 2016) and swamp walla-
bies (Ben-Ami 2005), which previously had stable home 
ranges, emigrated from the study site after wildfires. In con-
trast, Garvey et al. (2010) and Leahy et al. (2015) describe no 
shift in the ranges of tracked swamp wallabies and pale field 
rats before and after prescribed burns. Differences among 
species regarding whether they shift range after prescribed 
fires is likely to reflect their biology, behaviour, diet, and 
habitat specificity. For example, responses to fire are influ-
enced by the use of burrows (Long 2009; McGregor et al. 
2014; Leahy et al. 2015) and consumption of fungal fruit- 
bodies (Christensen and Lewis 1980; Johnson 1995; Vernes 
and Haydon 2001). Such differences in response highlights 
the importance of tracking fauna species to determine specific 
resources used after fire. 

The new home ranges established in fire-exclusion areas 
by quokkas in the present study were in the same habitat, 
with well-developed riparian vegetation structure providing 
refuge and forage. This result shows the species’ high fidelity 
to riparian ecotype with dense understorey, as previously 
reported (Hayward et al. 2005; Bain et al. 2016; Dundas 
et al. 2018). The response of species to fire will vary with 
fire parameters (e.g. size, severity, timing, topography) 
affecting the retention of habitat, but will also be influenced 
by the species’ ecology. Species with broad habitat prefer-
ence are likely to be more adaptable to the post-fire land-
scape than habitat specialists. Many grazing species will take 
advantage of vegetation regrowth soon after fire (Blumstein 
et al. 2002; Archibald and Bond 2004; Hayward et al. 2004;  
Hope 2012; Bain et al. 2016). However, the quokka is largely 
a browser (Hayward 2005), and its woody shrub diet is likely 
to take longer to re-grow, as suggested by the long avoidance 
of burned areas (average of 105 ± 65 days). In addition, the 
timing of understorey vegetation regrowth may differ 
according to the fire severity (encapsulating the joint impact 
that elements of a fire regime have on an ecosystem) 
(Burrows et al. 2008). Fire severity affects where resprouting 
occurs (Burrows 2013), availability and size of unburned 
patches (Sitters et al. 2015; Nielsen 2018), the amount and 
quality of retained course woody debris (Hollis et al. 2018), 
and stimulation of soil stored seedbanks (Ooi et al. 2006). 
Consequently, vegetation structure and plant responses to 
fire in turn influence fauna assemblages and whether a 
recently burned area contains habitat that is suitable for 
use (Densmore et al. 2023). 

Did quokkas change their home range area after 
prescription burning? 

Contrary to our predictions based on the expectation that fire 
would remove edible browse, therefore requiring greater 
movements to locate suitable food plants, we found that the 
prescribed burns did not affect overall home range size of the 
quokkas tracked in this study. We also found no significant 
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difference in the size of diurnal (i.e. refuge locations) and 
nocturnal (i.e. foraging locations) home ranges before and 
after fire. These findings reinforce previous studies finding 
no significant fire-related change in the home-range sizes of 
brush-tailed bettong, northern bettong and long-nosed ban-
dicoot (Christensen and Lewis 1980; Vernes and Haydon 
2001; MacGregor et al. 2013). However, our result does 
not corroborate a previous study reporting quokkas foraged 
in recently burned habitat less than 3 months post-fire 
(Christensen and Kimber 1975). These different results 
could reflect differential research methods and impact of 
fires across specific landscapes. 

Management implications of this study 

This study has highlighted several important considerations 
to inform fire management and quokka conservation. We 
have demonstrated no mortalities as a direct result of pre-
scribed fire where nearby fire exclusion areas were present, 
with quokkas moving into proximal unburned habitat dur-
ing prescribed fire operations. Permitting natural movement 
into these areas will decrease the risk of mortalities where 
animals become confused by fire or smoke present in the 
direction of the exclusion areas. Fire-exclusion areas there-
fore need to be located close enough to facilitate quokka 
movement, and should be appropriately sized to cater for a 
predicted increase in population density over the short to 
medium term. Bain et al. (2016) suggested that quokkas 
persisted after fire in unburned habitat patches >100 ha, 
but not in patches smaller than this, and not in completely 
burned habitat. Unburned patches of small sizes were never-
theless useful as ‘stepping stones’, providing temporary shel-
ter where quokkas could wait until the immediate threat had 
passed to find their way to a larger patch or fire exclusion in 
the longer term. Planning should consider appropriate area 
for the total population that is likely to use the fire-exclusion 
site while surrounding burned habitat regenerates. 

We found that quokkas did not use burned areas for at 
least 6 months post-burn, so fire-exclusion areas will be 
critical for providing refuge, foraging resources, and protec-
tion from predators for at least this time period. Identifying 
when regrown vegetation becomes used again by quokkas 
was beyond the scope of the present project, but is imperative 
for future planning. Monitoring the effectiveness of planned 
exclusions will be critical to informing planning decisions and 
allowing adaptive management. Fire-exclusion size, location, 
quokkas density, fuel age of vegetation within exclusion, 
predators, and competitors can all influence how successful 
an exclusion area is. By monitoring or describing these param-
eters over time, we can determine those that maximise con-
servation outcomes. 

Finally, more research is needed to understand dispersal 
among fragmented quokka populations. We found that 20 
male quokkas in the Northern Jarrah Forest had much larger 
home ranges (95% KDE 75.2 ± 59.7 ha) than the previously 

reported home-range size of males (6.92 ha) and females 
(5.91 ha), derived from triangulation of VHF signals 
(Hayward et al. 2004). With variation in the intensity of 
sampling between the two studies, Hayward et al. (2004) 
collected no more than one diurnal and one nocturnal loca-
tion per day and obtained an average of 35 VHF fixes for 58 
animals. In contrast, our study obtained an average of 72 
VHF fixes for 14 animals and 316 GPS fixes for six quokkas 
pre-burn, as well as 84 VHF fixes for nine quokkas and 324 
GPS fixes for nine quokkas post-burn. The use of GPS collars 
in the present study may partially explain the larger home 
ranges estimated in the present study, which captured long- 
range movements. Furthermore, Hayward et al. (2004) dem-
onstrated a negative relationship between population density 
and home range area of individuals, which may suggest that 
decreasing population size over time has also contributed to 
larger home range areas recorded in the present study. 

We reported two long-range movements of more than 9 km 
where tracked adult males moved between forest blocks.  
Hayward et al. (2005) reported no quokka dispersal between 
isolated populations in the Northern Jarrah Forest, as a possi-
ble response to the pressure and predation by foxes. Dundas 
(2019) described quokka morphological abnormalities sug-
gesting inbreeding in two Northern Jarrah Forest populations, 
supported by genetic isolation between the populations 
(Spencer et al. 2019). On the contrary, southern quokkas 
routinely travel distances up to 10 km where there is optimal 
habitat connectivity between riparian vegetation, and where 
movement occurs between populations (Bain et al. 2020) and 
genetic mixing consequently follows (Spencer et al. 2019). 
Detection of two Northern Jarrah quokkas moving between 
distant sites from the present study warrants further long-term 
investigations, aiming to identify isolated and connected resi-
dents to inform fire planning. 

Conclusions 

Prescribed burning is a necessary but complex practice that 
is increasingly climatically challenging (Russell-Smith et al. 
2020). The impacts of prescribed burning on many 
Australian fauna species are poorly researched. Most studies 
about fauna species in fire-prone ecosystems do not inte-
grate animal movement and assume that species respond to 
fire along a post-fire successional axis (Nimmo et al. 2019). 
Considerations about prescribed burning in and around 
quokka habitat is becoming more complex in the presence 
of a drying climate, considering the vulnerability of the 
fragmented populations and uncertainties around quokka 
movements patterns. In Western Australia, the Northern 
Jarrah Forest has experienced increased temperature 
(Braganza and Church 2011), decreased rainfall, and reduc-
tion of soil water reservoirs causing decreases to stream flow 
since the 1970s (Sudmeyer et al. 2016). Consequently, the 
vegetation assemblage is becoming drier with less moisture 
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differentials in riparian areas, increasing the likelihood of 
them being impacted by fire, and this is forecast to continue 
into the future. A carefully planned fire strategy for this region 
is therefore imperative to ensure sufficient riparian vegetation 
remains for quokkas to retreat to when part of their habitat 
has been burned. This study shows the importance of mon-
itoring each of these fragmented populations before and after 
prescribed burns, both in burn and fire-exclusion areas, to 
define appropriately sized and located fire-exclusion areas to 
ensure the persistence of populations into the future. 
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