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An improved spatio-temporal clustering method for 
extracting fire footprints based on MCD64A1 in the 
Daxing’anling Area of north-eastern China 
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ABSTRACT 

Background. Understanding the spatio-temporal dynamics associated with a wildfire event is 
essential for projecting a clear profile of its potential ecological influences. Aims. To develop a 
reliable framework to extract fire footprints from MODIS-based burn products to facilitate the 
understanding of fire event evolution. Methods. This study integrated the Jenks natural breaks 
classification method and the density-based spatial clustering of applications with noise 
(DBSCAN) algorithm to extract the fire footprints in Daxing’anling region of China between 
2001 and 2006 from MCD64A1 burned area data. Key results. The results showed that the fire 
footprints extracted by the model gained an overall accuracy of 80% in spatial and temporal 
domains after an intensive validation by using the historical fire records provided by the local 
agency. The agreement of burned area between the extracted fire patches and the historical fire 
records for those matched fire points was characterised by an overall determination coefficient 
R2 at 0.91. Conclusions. The proposed framework serves as an efficient and convenient wildfire 
management tool for areas requiring large-scale and long-term wildfire monitoring. 
Implications. The current framework can be used to create a reliable large-scale fire event 
database by providing an important alternative for the improvement of field investigation.  

Keywords: clustering, Daxing’anling, DBSCAN, fire footprint, Jenks natural breaks, MCD64A1, 
remote sensing, wildfire. 

Introduction 

As one of the largest potential mechanisms to release carbon from forest ecosystems, 
wildfires play a pivotal role in determining both the forest ecosystem’s function and 
structure (Gruber et al. 2004). The frequency, extent and intensity of fires are drivers of 
regional ecosystem’s evolutions (Goldammer and Furyaev 1996; Van Mantgem et al. 
2011), affecting the carbon and nitrogen cycles as well as the energy balance and climate 
change (Grogan et al. 2000; Brockway et al. 2002; Girardin and Mudelsee 2008). 
Traditional field investigations to document the information on fires are time- 
consuming, labour-intensive, accessibility-limited and extremely dangerous. Remote- 
sensing technology has the characteristics of large-scale observation and diverse spatial 
and temporal resolutions, which can effectively describe the surface process in different 
levels of detail and offset the deficiency of reported statistical data in informatisation and 
spatialisation of fire management, providing an effective technical means for studying 
wildfire (Chuvieco and Congalton 1989; Peng et al. 2007; Mitri and Gitas 2013; Mallinis 
et al. 2018). Moderate Resolution Imaging Spectroradiometer (MODIS) has been widely 
used for fire detection, fire risk mapping and post-fire vegetation restoration assessment 
in large areas due to its advantages of high temporal resolution, medium spatial resolu
tion for land surface observation application and free accessibility (Loboda et al. 2007;  
Van Leeuwen 2008; Hope et al. 2012; Jin et al. 2012; Maier et al. 2013). One of the 
prevalent satellite-based global burned area products available today is the MODIS 
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MCD64A1 burned area product, which is based on daily 
surface reflectance imagery from the sun-synchronous, 
polar-orbiting MODIS Aqua and Terra multispectral satellite 
constellations with a 2-day observation frequency (Giglio 
et al. 2009). The MCD64A1 burned area product uses near 
daily MODIS surface reflectance imagery trained with the 
MODIS active fire product. It has been extensively validated 
in several regions of the world and is also regularly subject 
to algorithm refinements (Boschetti et al. 2008; Roy et al. 
2008; Schroeder et al. 2008a; Roy and Boschetti 2009). Most 
studies require appropriate burn data to assist the refine
ment. The commonly used burn data are often based on 
pixel information statistics rather than the fire event itself. 
This makes it impossible to study specific independent fire 
events in a large area and misses some important informa
tion due to not taking full advantage of the large-scale 
monitoring of remote-sensing technology. 

Fire Footprint refers to the spatial and temporal informa
tion of each Fire event. Winoto-Lewin et al. (2020) deter
mined the vegetation regeneration, maturation and fire 
incidence and severity across forest types, following wild
fires in January and February 2019, by setting a random 
point survey in the fire footprint. French et al. (2016) sur
veyed the fire footprint, and an adjacent management burn, 
to investigate the drivers of fire severity in sedge–heathland 
and to assess the regeneration response of woody vegetation 
and how these were influenced by antecedent fire histories.  
Bird and Cali (1998) analysed fire footprints from the accu
mulation of several years of landscape use visible on aerial 
photographs. Currently, the acquisition of fire footprint 
information still relies mainly on field surveys, which are 
time-consuming, labour-intensive and difficult to implement 
in large areas and remote areas, and are prone to fire 
footprint’s information loss or omission and inaccuracy. 

Density Based Spatial Clustering of Applications with 
Noise (DBSCAN) is an outstanding clustering method well 
known for its ability to identify groups of arbitrary shapes 
and deal with noisy datasets (Ester et al. 1996; Patil and 
Vaidya 2012), and it has been applied in fire ecology with 
an emphasis on clustering application models. For example,  
Artés et al. (2019) used DBSCAN algorithm to cluster hot
spot data of Kalimantan Island and South Sumatra Province 
in Indonesia during 2002–2003. Kristianto et al. (2020) used 
land surface temperature (LST) data and local agency statis
tics to cluster the local fire high-risk areas. Sheng et al. 
(2021) presented a method based on DBSCAN and convolu
tional neural network to recognise flame and smoke modes 
connected to fire stages. Vatresia et al. (2020) proposed a 
spatio-temporal clustering method with DBSCAN to cluster 
hotspot data over Sulawesi Island from 2016 to 2018.  
Usman et al. (2015) studied the distribution pattern of hot
spot data in Sumatra Island from 2002 to 2013 based on 
DBSCAN clustering algorithm. However, there are few stud
ies on clustering based on burned pixels with temporal 
attributes to obtain fire footprints. 

The Jenks optimisation method, also called the Jenks 
natural breaks classification method (here after referred to 
as Jenks), is a data classification method designed to deter
mine the best arrangement of values into different classes. 
Previous studies have proved that Jenks has good adaptabil
ity and high accuracy in the geographical environment unit 
division (Chen et al. 2013; Yalcin and Kilic Gul 2017; Zhou 
et al. 2020). Jaafari et al. (2019) used the Jenks method to 
classify the probability values of fire risk and generated the 
distribution maps of five different wildfire occurrence 
grades. Anchang et al. (2016) proposed an effective urban 
vegetation-mapping method based on IKONOS image by 
combining Jenks method with Agglomerative Hierarchical 
clustering (AHC) algorithm. Based on these backgrounds, 
the Jenks optimisation method can be used to classify 
burned pixels to maximise the difference of combustion 
time attributes among groups, and then divide one image 
into multiple pieces for clustering optimisation parameters 
to make full use of burn date information. 

Considering the strengths and limitations highlighted in 
the above techniques, the purpose of this study was to com
bine DBSCAN and Jenks to develop a framework that can 
extract fire footprints from remote-sensing-based fire prod
ucts, to accurately extract the location of fire events case-by- 
case in a large area and to obtain the exact occurrence time 
and duration of fire events. Daxing’anling is China’s major fire 
management area. The forest ecosystem in Northeast China 
holds a large carbon pool and plays an important role in 
mitigating global climate change (Xing et al. 2015; Zhang 
et al. 2016). We used MODIS MCD64A1 data from 2001 to 
2006 to extract fire footprints in the Daxing’anling, then 
verified fire footprints according to the historical fire records 
provided by the local institutions. It is expected that this fire 
footprint extraction method would not only help to systemat
ically assess the burning mechanisms of fires in the region, 
but also contribute to fire prevention and suppression policy 
development, as well as to carbon emission accounting from 
the historical fire events. 

Material and methods 

Study area 

The Daxing’anling area has a geographical span of 
50°10′–53°33′N, 121°12′–127°0′E, which covers 8.3 ×  
104 km2. It is located in the northwestern Heilongjiang 
Province and northeastern Inner Mongolia Autonomous 
Region of Northeast China (Fig. 1). The average elevation of 
the study area is 573 m, and the elevation of the highest hill is 
1528 m above sea level, with gentle slopes <15° accounting 
for >80% of the area. The terrain is undulating and is higher 
in the western and central parts and lower in the eastern, 
northern and southern parts. Forest cover of the area is about 
76.3%. Dominant tree species include Larix gmelinii, Betula 
platyphylla and Pinus sylvestris var. mongolica. 
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According to the meteorological administration of China, 
the annual mean temperature of the study area is −3°C, 
with the lowest temperature at −48°C and the highest 
temperature at 36°C. The frost-free period is 90–110 days, 
and the annual precipitation ranges from 400 to 550 mm, 2/ 
3 of which occurs from June to August. The study area has a 
temperate continental monsoon climate of cool and humid 
summers, with southeast airflows from the Pacific high- 
pressure system and cold and dry winters under the control 
of the Mongolia high pressure system (Tian et al. 2011). The 
annual average wind speed is 2 m/s, with a maximum 
7–8 m/s that often occurs in spring (Tian et al. 2013). The 
details on the study area were obtained from the 
Daxing’anling District Administration Office (http://www. 
dxal.gov.cn/rwxa (accessed on 24 May 2022)). 

Data and preprocessing 

Remote-sensing-based MCD64A1 and MCD12Q1 
products 

We used the Collection 6 MCD64A1 product in this study, 
with a spatial resolution of 500 m. The product is based on a 
dynamic threshold applied to the surface reflectance- 
dependent burn-sensitive vegetation index (VI) (Eqn 1) and 
incorporates temporal variability, which is guided by the 
MODIS active fire hotspot locations (Roy et al. 2008; Giglio 
et al. 2009; Humber et al. 2019). The data layers include burn 
date, burn data uncertainty, quality assurance, and first Day 
and last Day of reliable change detection of the year. The 

MCD64A1 product was used in this study because it is the 
reference product for burnt area monitoring that is publicly 
available. The layer information we used for this analysis was 
the burn date of each pixel in the day of year (DOY). 

VI = +
5 7

5 7
(1)  

where ρ5 and ρ7 are the surface reflectance of MODIS short 
wavelength infrared band 5 and band 7 respectively. 

The 500 m MCD12Q1 characterises five Global Land 
Cover classification systems. It depicts the Land Cover 
types by spanning a year’s input of observation data from 
the Terra and Aqua satellites. In this work, Land Cover Type 
1 products classified by IGBP (International Geosphere- 
Biosphere Programme) theme were selected. A total of 17 
land cover classes are specified, including 11 natural vege
tation classes, three developed and mosaicked land classes, 
and three non-vegetated land classes. According to the land 
cover type corresponding to the pixel value of data products 
(Sulla-Menashe and Friedl 2018), it is assumed that the pixel 
classification codes larger than 10 correspond to those non- 
combustible types in this study for mask preparation. 

The MODIS burned area product (MCD64A1) and land 
cover product (MCD12Q1) are available from the United 
States Geological Survey (USGS) (https://lpdaac.usgs.gov/ 
products/). The product numbers of MODIS dataset required 
for the study area are h25v03 and h26v03. In terms of data 
preprocessing, the MODIS Reprojection Tool (MRT) 
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Fig. 1. (a) Location of the Daxing’anling partial region in China. (b) Administrative division map of the study area. (c) Elevation 
map of partial Daxing’anling region.   
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provided by NASA’s EOSDIS (Earth Observing System Data 
and Information System) was used to perform format con
version, re-projection and image mosaicking from the origi
nal hierarchical data format (HDF) with the sinusoidal (SIN) 
projection, then to extract the required data layers from the 
transformed data. 

Validation data 
The validation data used in this study were provided by the 

Shenyang Institute of Applied Ecology, Chinese Academy of 
Sciences. The data consisted of all fire events recorded during 
2001–2006 in the Daxing’anling region, including the central 
latitude and longitude coordinates of the fire events, the 
estimated burned area and the fire occurrence time documen
ted in specific month. The burned area of the fire was visually 
measured on the ground by local investigators or profes
sionals after the fire, and the latitude and longitude of the 
fire location were obtained by monitoring towers and patrols 
in the forest area using GPS instruments to record the position 
of smoke and flames. We compiled the locational coordinates 
of each fire into the database in ArcMap package, and trans
formed the projection information to co-register the MODIS- 
derived products. These vectorised fire points were used for 
subsequent model validations in this study. 

Because the spatial resolution of MODIS-based products 
is 500 m and the corresponding land cover area of each 
burned pixel is 25 ha, for verification purposes we only 
used those fire events with burned areas larger than 25 ha 
in the fire database. According to the coordinates of each 
fire event provided by the local agency, it is considered that 
the fire occurrence point recorded by manual work may 
have a positional error, and the transformation of projection 
mode would lead to a certain degree of position deviation 
when it is re-projected. In order to ensure the matching 
between field fire points and burned patches extracted 
from MODIS-based products during the verification process, 
we took each vector point as the centre and established a 
buffer with a radius of 1 km. If the buffer overlapped with 
certain clustered burning patch, it would be determined as a 
coincided fire event. If multiple burned patches coincided 
with the buffer, the patch with the largest overlapped pixels 
was defined as the coincided or matched fire event. 

Methodology 

Based on the spatial location of MCD64A1 burned pixels and 
the burn date information represented by the pixel value, 
this study proposed an improved spatial–temporal clustering 
method to extract fire footprints. This method was mainly 
divided into two steps, namely time classification and spa
tial clustering (Fig. 2). Firstly, the classification model was 
used to classify the annual burning pixels in the study area 
into three fire periods based on the burn date, then different 
parameters were selected for three fire periods for spatial 
clustering to finally obtain the fire footprints. 

Classification method of fire occurrence period 
The Jenks method seeks to minimise the average devia

tion from the class mean in each class while maximising the 
deviation among different classes, which means that the 
method reduces the variance within classes and maximises 
the variance between classes (McMaster 1997). This group
ing method divides the data into classes, and for those 
classes, the boundaries (thresholds) are set at locations 
where the data values are relatively different. 

Step 1: Calculating the sum of squaring deviations from 
the mean of the complete dataset (SDAM) (Eqn 3) for the 
array of a certain class in the classification results, and 
denoting an array as A, whose mean value X̄ is (Eqn 2): 

X X¯ = n i
n i

1
=1 (2) 

X XSDAM = ( ¯ )i
n i=1

2 (3)  

where n is the number of elements in array A, and Xi is the 
value of the i-th element. 

Step 2: Getting all cases of datasets classification after the 
breakpoint combination, and the sum of squared deviations 
from the class means (SDCM) calculated for each combina
tion situation to select the smallest of them. Dividing n 
elements into k classes, so that k subsets can be obtained, 
for example [X1 X2 ⋯ Xi], [Xi+1 Xi+2 ⋯ Xj], ⋯ [Xj+1 Xj+2 ⋯ 
Xn], calculating the sum of the total deviation squares of 
each subset SDCMi, SDCMj, …, SDCMn, and summing up 
them to get SDCM1 (Eqn 4): 

SDCM = SDCM + SDCM + +SDCMi j n1 (4) 

MCD64A1: burn date

Jenks natural
breaks classi�cation

model

High frequency
�re period

Medium frequency
�re period

DBSCAN clustering
model

Fire footprints

Analysis and mapping

verify
Fire recorded

by local

Masked non-vegetated
pixels

MCD12Q1:
LC type1

Low frequency
�re period

Fig. 2. Research framework of the study.  
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In the case of other combinations divided into k classes, the 
value of SDCM2, …, SDCMCn

k can be calculated successively 
in the same way, and the smallest value is selected as the 
final result SDCMmin. Therefore, this classification range is 
the best classification. 

Step 3: Calculating the gradient goodness of variance fit 
(GVF) of each classification (Eqn 5): 

GVF =i
SDAM SDCM

SDAM
i (5)  

the GVFi ranges from 0 (worst fit) to 1 (perfect fit). The higher 
the gradient is, the larger the difference between classes, and 
the test proves that the SDCMmin in step 2 is adopted. When the 
gradient value is the largest, it can be concluded that the 
classification result of Jenks classification method is most 
ideal. 

The algorithm is commonly used in Geographic 
Information Systems (GIS) applications. In this study, we 
implemented the Jenks algorithm based on ArcGIS software 
by using a raster reclassification tool in the ArcMap Spatial 
Analyst Toolbox. Then, the MCD64A1 burn date data of each 
year were reclassified according to the breakpoint value 
obtained by using the grid calculator tool, and the spatial 
information of each burned pixel was retained to obtain the 
combustion map of the three periods. The following labels 
were assigned to the three unlabelled classes by ranking the 
number of burned pixels: high frequency fire period; medium 
frequency fire period; and low frequency fire period. 

Clustering algorithm and parameter tuning 
DBSCAN requires two basic parameters including ε (Eps) 

and minPoints (MinPts). Eps describes the minimum dis
tance between two points that can be considered as neigh
bours. MinPts is the minimum number of points to form a 
group region (Ester 2009). More simply, the step-by-step 
description of the DBSCAN algorithm is as follows: 

Step 1: Find the neighbourhoods of every point with the 
parameter Eps; 

Step 2: Identify the core points that have more neigh
bours than MinPts; 

Step 3: Find components of core points connected with 
the neighbour graph; 

Step 4: Assign non-core points to the nearby cluster with 
nearest Eps; if there is no nearby cluster meeting the Eps, 
assign them to noise. 

DBSCAN algorithm performance is very sensitive to Eps 
and MinPts parameters, and improper values of Eps and 
MinPts will lead to poor or even incorrect clustering effect. 
If MinPts remains stable, too-large Eps value will lead to most 
points being clustered in the same cluster, and too-small Eps 
will lead to the split of a cluster. If Eps is unchanged and the 
value of MinPts is too large, the midpoint of the same cluster 
will be marked as an outlier, or two neighbouring clusters 
with high density may be merged into one cluster; if the 

MinPts value is too small, it will lead to the discovery of a 
large number of core points (Sander et al. 1998). To tune the 
two parameters properly, the K-distance (k-dist) graph was 
used in the study. The specific principle of the k-dist graph is 
as follows: set a dataset P = {p(i); i = 0, 1, …n}. For any point 
p(i), calculate the distance between point p(i) and all the 
points in subset S = {p(1), p(2), …, p(i − 1), p(i + 1), …, p 
(n)} of set D. The distances are sorted in the ascending order. 
Assuming that the sorted distance set D = {d(1), d(2), …, d 
(k − 1), d(k), d(k + 1), …, d(n)}, then d(k) is called k-dist. 
The k-dist should be calculated for each point p(i) in the set P, 
and the k-dist graph of the clustering model can be drawn by 
ordering the k-dist values in the descending manner. For 
datasets with high density level, the variation depends on 
the density of the cluster and the random distribution of 
points, but for points with the same density level, the range 
of variation will not be large, and there may be large variation 
between two density levels (Liu et al. 2007). Therefore, the k- 
dist graph is a smooth curve consisting of line segments 
composed with different d(k). The density level of noise 
points will be obviously different from that of clustered 
points, which can be distinguished by the maximum slope 
change position of the curve (Fig. 3). 

In the k-dist graph, the distance corresponding to the point 
with the largest change in slope is determined as Eps value. A 
guiding principle for the selection of MinPts is that 
MinPts ≥ dim + 1, where dim represents the dimension of 
the data to be clustered (Nisa et al. 2014; Wang et al. 2019). In 
the MCD64A1 dataset used in this study, the time interval of 
different burning pixels (DOY difference) is also a dimension 
for calculating the distance between two points in the cluster
ing model in addition to the horizontal and vertical coordi
nates. The dimension of data in the study is 3 and the 
MinPts ≥ 4. Combined with the spatial resolution of 
remote-sensing products, the area of ground objects corre
sponding to one pixel is 25 ha (500 m × 500 m) and the area 
of 4 pixels is 100 ha, which is the area threshold for the fire 
classification of ‘serious’ type in The Forest Fire Prevention 
Regulations issued by the Chinese government. Therefore, we 
set MinPts to 4 for model parameters of all datasets to be 
clustered, and determined the threshold point one by one 
against the 4-dist diagram to set the corresponding Eps value. 
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Fig. 3. K-dist distribution curve and its interpretation.  
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This study implemented the DBSCAN clustering algo
rithm for remote-sensing-detected burned-pixel dataset 
based on the Geospatial Data Abstraction Library (GDAL) 
package combined with sklearn packages in Python 
environment. 

Model fitting and evaluation 

In this study, the silhouette coefficient and noise were used 
as the evaluation index for the clustering model perform
ance. The noise% is the ratio of pixels classified as noise to 
the pixels clustered as burned pixels. Silhouette coefficient is 
an index for evaluating the effect of clustering, which can be 
understood as an index to describe the contour definition of 
each category after clustering (Rousseeuw 1987). There are 
two factors involving cohesion and separation. The cohesion 
reflects the closeness between a sample point and elements 
in the class, also known as the inner class distance. The 
separation represents the degree of closeness between a 
sample point and elements outside the class, also known 
as the distance between classes. The formula of silhouette 
coefficient is as follows: 

S i( ) = b i a i
a i b i

( ) ( )
max{ ( ), ( )} (6)  

where a(i) represents the cohesion of the sample point, 
which is the average of the degree of dissimilarity between 
i vector and other points in the same cluster A;, and b(i) is 
the minimum of the average dissimilarity of the i vector to 
other clusters. The value range of S(i) ∈ [−1, 1], and the 
larger the silhouette coefficient, the better the clustering 
effect. Averaging the silhouette coefficients of all points 
gives the total silhouette coefficient S of the clustering 
result. 

For the obtained fire footprint statistics by DBSCAN, the 
pixel value with the smallest DOY value in each patch was 
used as the fire occurrence time and converted to the corre
sponding month, and the fire burned area was counted by 
the number of burned pixels. We used several statistical 
measures to quantify the model performance, including 
the R2, (Eqn 7), the mean absolute error (MAE) (Eqn 8) 
and the root mean square error (RMSE) (Eqn 9). 

R = 1 y y
y y

2 ( ˆ )
( ¯ )

i
n i i

i
n i

=1
2

=1
2 (7) 

y yMAE = (ˆ )n i
n

i i
1

=1 (8) 

RMSE = y y
n

( ˆ )i
n i i=1

2
(9)  

where n is the number of samples, ŷi is the burned area 
predicted by footprint, yi is the burned area verified by the 
local survey agency, ȳ is the arithmetic mean of all verified 
burned area. 

Results 

Jenks classification of DOY 

We obtained the frequency distribution of all burned image 
elements in DOY in the Daxing’anling region from the MODIS 
burn date dataset during the period 2001–2006 using the 
Jenks method. Fig. 4 shows the corresponding statistics. 
Mean represents the average date of occurrence of burning 
pixels in the current year and St.D reflects the dispersion 
degree of burning pixels in time. The difference between 
the two DOY breakpoint values in 2003 and 2006 was smaller 
compared with the other 4 years, within 28 and 21 days, 
respectively. The highest standard deviation was observed 
in 2001. The line graph of the annual variation of the Jenks 
classification breakpoint values shows that 2003 had the 
smallest mean DOY value and the smallest two breakpoint 
values, and the time period covered by the burned pixels was 
earlier than in other years. The St.D was largest in 2001, 
indicating that the time distribution of burned pixels in that 
year was relatively dispersed, and smallest in 2005, indicat
ing that the time distribution of burned pixels in that year was 
relatively concentrated. The DOY mean in 2003 was smallest, 
but the DOY mean in the remaining years was greater than 
150, indicating that the fires in the study area mainly 
occurred after June between 2001 and 2006. 

According to the above principles of categorical statistics 
and the obtained DOY breakpoint values, the number of 
burned pixels in the three periods of each year is summarised 
in Table 1. Ranking the number of burned pixels in descend
ing order, ** is the high frequency fire periods (HF), * is the 
medium frequency fire periods (MF) and the rest is the low 
frequency fire periods (LF). The highest number of pixels was 
burned in 2003, and the lowest in 2004. After classification, 
the number of pixels in the HF period ranged from 141 to 
21 184, the number of pixels in the MF period ranged from 81 
to 17 719 and the number of pixels in the LF period ranged 
from 38 to 2005. It can also be seen that the HF in almost all 
years was the third period, except for 2006. That means that 
most of the burning in 2001–2005 was in the later part of the 
annual burn date range. 
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Fig. 4. Annual changes and statistics of burned pixels and break
points from 2001 to 2006.  
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The MCD64A1 burn date dataset in the study area from 
2001 to 2006 was classified through the above preparation. 
The division of the three fire periods in each year is shown 
in Fig. 5. It can be seen that after the Jenks classification of 
DOY, pixels in the three burn periods have been clearly 
distinguished for each year. According to the burning 
period, the burned pixels of each year were divided into 
three images for subsequent spatial clustering. 

DBSCAN parameter training and fire clustering 

With all MinPts setting to 4, k-dist graphs were constructed 
to identify turning points for Eps parameter selection for all 
MCD64A1 burn date images in the three periods of each 

year after reclassification (Fig. 6). The Eps range of all the 
clustering models obtained by k-dist graph selection was 
from 0.007 to 0.082, the smallest Eps value at 0.007 was 
observed in the HF period of 2001 and the highest Eps value 
at 0.082 was identified for the MF period in 2002. The noise 
ranged from 0.05 to 13.95%, and most of models had less 
than 5% noise, except for the LF period in 2001, 2002 and 
2006. The silhouette coefficient was almost larger than 0.9, 
except for the value of 0.821 observed in the MF period of 
2003. The number of clusters (denoted as n_clusters in the 
table) per year was largest in 2003 (39 categories) and 
smallest in 2004 (11 categories) (Table 2). The number of 
clusters in each period was smallest in the high frequency 
fire period in 2001 (two categories), and largest in the high 
frequency fire period in 2003 (14 categories). 

Accuracy verification of fire events 

We masked out the non-combustible pixels of the above 
images after Jenks classification and DBSCAN clustering 
by using the corresponding land cover data of the current 
year, then counted the pixel number of each fire event to 
calculate its corresponding area. The fire events provided by 
the local agency were compared with the fire events 
obtained by Jenks–DBSCAN models to derive the perform
ance measures. Fig. 7 shows a typical example that reflects 
the consistency between the burned pixels extracted by the 
Jenks–DBSCAN model from MODIS products and the real- 
world fire profiles depicted by higher spatial resolution 
remote-sensing natural colour composites. Obviously, 

Table 1. Number of MCD64A1 pixels classified according to the 
breakpoints from 2001 to 2006.       

Year Total number of 
burned pixels 

Period 1 Period 2 Period 3   

2001 470 125* 82 263** 

2002 2836 113 598* 2125** 

2003 40 908 17 719* 2005 21 184** 

2004 260 38 81* 141** 

2005 1983 87 534* 1362** 

2006 1854 1605** 163* 86  

* Medium frequency fire periods (MF), ** high frequency fire periods (HF), no 
asterisk low frequency fire periods (LF).  

N

Classi�cation threshold of DOY
Value 1: 110
Value 2 : 279

2001

Classi�cation threshold of DOY
Value 1: 178
Value 2: 279

2002

Classi�cation threshold of DOY
Value 1: 105
Value 2: 133

2003

Classi�cation threshold of DOY
Value 1: 201
Value 2: 280

2004

0 100 200 km
Legend: Low �re frequency Medium �re frequency High �re frequency

Classi�cation threshold of DOY
Value 1: 224
Value 2: 274

2005

Classi�cation threshold of DOY
Value 1: 156
Value 2: 177

2006

Fig. 5. Classifying fire occurrence periods using Jenks algorithm from MCD64A1 burn date dataset in the study area.   

www.publish.csiro.au/wf                                                                                                      International Journal of Wildland Fire 

685 

https://www.publish.csiro.au/wf


0.20
k-dist curve

Threshold point0.15

0.10

0.05

0.00

0 10 20
The ordinal number of points

2001_LF

30 40 50

0.20
k-dist curve

Threshold point0.15

0.10

0.05

0.00

0 10 20
The ordinal number of points

2001_HF

30 40 50

0.20
k-dist curve

Threshold point0.15

0.10

0.05

0.00

0 10 20
The ordinal number of points

2001_MF

30 40 50

0.20
k-dist curve

Threshold point0.15

0.10

0.05

0.00

0 10 20
The ordinal number of points

2002_LF

30 40 50

0.20
k-dist curve

Threshold point0.15

0.10

0.05

0.00

0 10 20
The ordinal number of points

2002_HF

30 40 50

0.20
k-dist curve

Threshold point0.15

0.10

0.05

0.00

0 10 20
The ordinal number of points

2002_MF

30 40 50

0.20
k-dist curve

Threshold point
0.15

0.10

0.05

0.00

–0.02

0.00

0.02

0.04

0.06

0.08

0.10

0

0 5 10 15 20 25 30

10 20

2003_LF

k-dist curve

Threshold point

2004_LF

–0.02

0.00

0.02

0.04

0.06

0.08

0.10

0 5 10 15 20 25 30

k-dist curve

Threshold point

2004_MF

–0.02

0.00

0.02

0.04

0.06

0.08

0.10

0 5 10 15 20 25 30

k-dist curve

Threshold point

2004_HF

0.00

0.02

0.04

0.06

0.08

0.10
k-dist curve

Threshold point

2005_LF

0.00

0.02

0.04

0.06

0.08

0.10
k-dist curve

Threshold point

2005_MF

0.00

0.02

0.04

0.06

0.08

0.10
k-dist curve

Threshold point

2005_HF

k-
th

 n
ea

re
st

 n
ei

gh
bo

ur
 d

is
ta

nc
e

The ordinal number of points

30 40 50

0.20
k-dist curve

Threshold point0.15

0.10

0.05

0.00

0 10 20

2003_HF

30 40 50

0.30

0.25

0.20

k-dist curve

Threshold point

0.15

0.10

0.05

0.00

0 10 20

2003_MF

30 40 50

0 10 20 30 40 50 0 10 20 30 40 500 10 20 30 40 50

0.00

0.02

0.04

0.06

0.08

0.10
k-dist curve

Threshold point

2006_LF

0.00

0.02

0.04

0.06

0.08

0.10
k-dist curve

Threshold point

2006_MF

0.00

0.02

0.04

0.06

0.08

0.10
k-dist curve

Threshold point

2006_HF

0 10 20 30 40 50 0 10 20 30 40 500 10 20 30 40 50

Fig. 6. 4-dist graph for Eps parameter selection in the three periods of each year from 2001 to 2006.   
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MODIS fire pixels could match the shapes of post-fire vege
tation loss in the true colour images, and the locations of the 
two fire events also coincided with the clustered fire foot
prints in space. In terms of multi-temporal higher spatial 
resolution images, it can also be seen that there is a degree 
of differentiation of fire areas left by two burning events, 
with footprint 1 (Fig. 7a) clustering two burning patches 
into one fire event. Table 3 lists the performance measures 
of the fitted Jenks–DBSCAN models during the period 
2001–2006. Among the 112 fire footprints obtained by our 
models, 44 of the 55 fire events were in agreement with the 
actual fire conditions of validation, including not only the 
space, but also the conversion of the DOY of each fire event 
to the Gregorian calendar month that could correspond to 
the validation data. This accounted for 39.28% of the total 
clustered fire events and 80% of the coincided validation 
data. But the 2001 modelled results were not consistent with 
the validation data. The scattergram in Fig. 8 shows that 
although the overall accuracy derived from the verification 
data and clustering results of the fire area is good in terms of 
fitting parameter (R2 = 0.91), there are still many points 
where the estimated value deviates from the observation 
value greatly (far from the trendline). From Fig. 9 we can 
see that most of the burned pixels with complete shape are 
well clustered into one fire footprint; the burned pixels 
could be divided into different fire footprints even in 

adjacent spaces. In particular, for the two mega-fires in 
the east (one of which was named ‘319 prairie-forest fire 
event’), the local authorities provided nine fire coordinates 
because of its wide burning range and rapid diffusion, so we 
combined them into one fire event during accuracy verifica
tion, indicated on the map by a black thumbtack symbol. 

Discussion 

Effect of fire footprints clustering model 

By analysing the parameters of DBSCAN model (Fig. 6), we 
found that the 18 Eps identified in this study are all less than 
0.1, which is much lower than other clustering studies (Nisa 
et al. 2014; Usman et al. 2015) based on hotspot data, but 
match the range (0.025–0.08) identified in Yanuarsyah et al. 
(2016). We speculate that variations in the data type and 
density to be clustered are responsible for the Eps difference. 
Hotspot is one of the forest and land fire indicators widely 
used for developing fire early warning system to prevent, 
suppress and monitor wildfire in areas where there is a high 
fire risk, such as peat land (Usman et al. 2015). Thus, there 
may be a high correlation between hot spots and fire points, 
but in fact not all hot spots indicates fire points (Vatresia 
et al. 2020). The clustering analysis of fire point data is 
based on the Geography Tobbler’s law (Tobler 2004). 
However, for burned pixels, due to the occurrence and 
diffusion principle of wildfire (Thompson and Calkin 2011;  
Demange et al. 2022), there is a strong spatial connectivity 
between pixels in a fire footprint – this is why the modelled 
results in this study have very high silhouette coefficients 
(>0.9). We also find that bigger noise% corresponds to a 
relatively small n_cluster, whereas smaller noise% leads to 
larger n_cluster (Table 2). Therefore, in practical applica
tions, it is necessary to balance the parameters to achieve a 
better model effect. 

Two of the most apparent drawbacks of DBSCAN algo
rithm are its low execution speed and its sensitivity to 
parameter selection. To overcome these problems, an initial 
grouping was applied to the data in this work through the 
Jenks algorithm to form three clearly distinguished fire 
occurrence frequency periods for each year (Fig. 5). 
Clustering the different periods separately can reduce the 
operational complexity of the program running on the dis
tance between elements one by one, and can also distinguish 
between those two fire footprints in adjacent spatial loca
tions to avoid mixing them into one fire event; this enhances 
the useability of the temporal properties of burned pixels in 
the MODIS products. The classification of three fire frequen
cies year by year is helpful to study the dynamic changes of 
fire in long temporal series. 

Tables 1 and 2 show that DBSCAN tends to create too 
many clusters and redundancy when there are fewer fires in 
a year. The reason for this is that DBSCAN is applicable for 

Table 2. The descriptive statistics of the fitted DBSCAN models 
based on Jenks reclassification.        

Year Period type Eps n_clusters Noise% Metrics   

2001 HF 0.007 2 1.14 0.988 

MF 0.041 5 3.20 0.954 

LF 0.018 6 6.01 0.966 

2002 HF 0.047 8 0.24 0.926 

MF 0.082 6 1.00 0.963 

LF 0.056 4 7.08 0.971 

2003 HF 0.033 14 0.05 0.911 

MF 0.051 13 0.10 0.821 

LF 0.048 12 0.30 0.968 

2004 HF 0.025 5 4.26 0.982 

MF 0.013 3 3.70 0.985 

LF 0.025 3 2.63 0.960 

2005 HF 0.019 4 0.15 0.950 

MF 0.023 7 0.56 0.980 

LF 0.025 5 4.60 0.976 

2006 HF 0.030 4 0.50 0.940 

MF 0.031 7 1.23 0.978 

LF 0.015 4 13.95 0.962   
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relatively dense data. In particular, the excessive noise val
ues of the LF periods in 2001, 2002 and 2006 indicated a 
sparse spatial distribution of too few effective pixels to be 
clustered (Fig. 5). Before clustering, the Jenks was used for 
periodic classification. As can be clearly seen from the seg
mentation results in Fig. 5, after the Jenks classification, 
part of the fires very close to each other spatially had been 
pre-divided over three periods, which is helpful to reduce 
misclassification in subsequent spatial clustering. Taking 

2003 as an example, the contour shape of fires is intact 
(Fig. 9). In 2003, there was a very large fire in the study 
area. Its fire footprint was extensive but there were many 
small fire patches (Fig. 9; MF 7), making the model silhou
ette coefficients low in that period compared with other 
years. In addition, the parameters used in this study can 
also serve as essential information to expand the global- 
scale estimation of fire footprint extraction, and to improve 
the parameterisation of other fire models. 

(a)

(b) (c) (d)

Huzhong
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Legend
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Fig. 7. Comparison of the model-extracted fire events and multiple real validation situations. (a) Spatial match presentation of 
partial fire event clustering results and the validation fires in 2004. (b–d) High-resolution true-colour images of the target region 
obtained from Google Earth in 2003/12, 2004/12 and 2005/12, respectively.   

Table 3. Accuracy verification of fire time and fire area.         

Year Fire footprints frequency Burned area 

DBSCAN 
n_clustering 

Validation data Matched 
clustering results 

R2 RMSE (ha) MAE (ha)   

2001 13 1 0 – – – 

2002 18 6 5 0.70 392.65 1757.74 

2003 39 27 22 0.99 146.90 13 307.60 

2004 11 4 3 0.59 132.79 103.33 

2005 16 10 8 0.95 18.56 9733.44 

2006 15 7 6 0.99 1355.96 15 047.57 

Total 112 55 44 0.91 130.88 10 740.58   
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Analysis of the fire footprints 

Most of the fires that occurred in the area during the study 
period were of short duration, and large areas of fire scars 
were concentrated in the southeast area (Fig. 5). The fire 
footprints obtained by clustering in this study match, to a 
certain extent, the fire traces obtained by Tian et al. (2013). 
Fires with larger areas also matched the records obtained by  

Fang et al. (2015) from the China Forestry Science Center. 
Although the validation accuracy of the burned area showed 
excellent performance (R2 at 0.91), the frequency of the fire 
footprints obtained by clustering in this study is still much 
higher than that of the local records; only 44 out of 112 fire 
footprints match the validation data (Table 3). Additionally, 
some small-scale burnings were not investigated and were 
judged as fire events, so it is more difficult to balance the 
relationship between noise ratio and cluster number when 
adjusting the parameters of the DBSCAN model when the 
dataset was not dense enough (Patil and Vaidya 2012), and 
it was easy to have redundancy in the number of clusters in 
years when the fires were sparse. There was also the uncer
tainty in the MCD64A1 burned pixels. Studies consistently 
found that MODIS fire detection algorithms had trouble 
detecting smaller/cooler fires and frequently detected false 
alarms (Schroeder et al. 2008b). The clustering effect of the 
model on the fire footprint was more effective for large-scale 
and spatially continuous fire footprints in a year than small 
and dispersed fire footprints. In addition to the redundancy of 
clustering category number caused by the DBSCAN model 
itself, the model’s outcomes could still compensate for the 
omission errors of large-scale wildfire monitoring implemen
ted by the local agency on the ground. Most forest fires in this 
region are caused by lightning and man-made fires (Zhao et al. 
2020). The peak fire seasons occur in spring and autumn, 
including the periods from early March to June and from 
late September to mid-October. In drought years, forest fires 
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may also occur in summer. After the ‘Great Black Dragon Fire’ 
(Xu 1987) in the Daxing’anling in 1987, the establishment of 
professional fire control institutions and the improvement of 
fire management level in China were significantly improved 
(Zong et al. 2022), which gradually reduced the number of 
fires caused by human factors in the region. There are still 
many spring fire hazards associated with the burning of sou
venirs for the traditional Chinese Qingming Festival (Qi et al. 
2022). This valuable information regarding fire occurrence 
occasions and locations – in partnership with the fire foot
prints extracted from the models in the current work – will act 
as an essential input for the formulation of targeted fire 
prevention and suppression actions. 

In the study period, the 3.19 prairie–forest fire event was a 
typical mega-fire, which lasted for 1 month and caused great 
economic losses to the local area. In addition to human 
mismanagement of the local forests, the corresponding cli
mate conditions and the accumulation of combustibles also 
contributed to its occurrence. The high-severity canopy fires 
occured in the presence of tall, flammable P. pumila (Shu 
et al. 2004) (Fig. 7). Zhang and Hu (2008) indicated that 
lightning-caused fires accounted for 36.3% of the total fire 
events in this region, and more than 75% of them occurred in 
summer. This corresponds to the information we got from the 
validation data. The fire footprints extracted from this study, 
which are reliable in spatial correspondence, accurate in the 
time of fire occurrence and have high R2 in area statistics, can 
be used in a variety of applications and are beneficial for fire 
condition monitoring and biomass burning, as well as carbon 
emissions and related air quality studies. 

Utility and application of the technology 

Global fire patch data derived from pixel-level burned area 
information have recently emerged as an important source 
of information for climate, vegetation and carbon cycle 
modelling (Archibald et al. 2013; Loepfe et al. 2014;  
Hantson et al. 2015). Fire regimes could be more precisely 
described and modelled with an assemblage of fire traits 
rather than simple burned area (Laurent et al. 2018). Fire 
footprint characteristic is closely linked to meteorological 
and topographical attributes, as well as fuel continuity (Cary 
et al. 2006). Similarly, fire footprint characteristic databases 
(morphology, time span) that reflect potential propagation 
processes could be used to explore functional fire geography 
as a framework for analysis and modelling. Some research
ers have developed algorithms for establishing fire database 
based on remote-sensing data. Chuvieco et al. (2022) 
expanded the MODIS Burned Area Product fire database 
using the high resolution of Sentinel-2 data. Laurent et al. 
(2018) used burned area from MODIS and MERIS sensors to 
build a global database of fire patch functional traits. 
Although the proposed fire footprint extraction framework 
in the current work was limited by the spatial resolution of 
single remote-sensing data that fails to take into account 

small-scale fires, it can efficiently establish a large fire event 
database with long time series and large regional scales. 

The proposed framework is designed to obtain the fire 
footprint using MCD64A1 data and extract the combustion 
pixels into patches by the Jenks–DBSCAN method, which 
can be used for characteristic mining. Compared with the 
local field surveys, the database management of large-area 
fires often has manual errors in the measurement of burnt 
land, fire location and occurrence time (Lentini 2006). The 
current framework was validated in this study, and can be 
used to create a reliable large-scale fire event database, 
providing an important tool for the improvement of field 
investigations and contributing to fire prevention manage
ment and forest resource protection, all of which are quite 
helpful for fire regime research. 

Limitations and prospects 

Although limited by the time span of validation data, this 
study accurately determined the time and space of a single 
fire event as a test of spatio-temporal clustering method; the 
impact of large-scale and long-term fires in the study area 
was not explored in depth. The selection of remote-sensing 
products is relatively simple, but there are factors (including 
cloud–snow coverage and burned area uncertainty) that can 
affect the accuracy of fire footprint result. The burn date 
uncertainty is often associated with the lack of a clear signal 
in the MODIS surface reflectance imagery due to cloud 
contamination or snow coverage. A minimum of 1 day 
uncertainty is applied for all burned pixels (Giglio et al. 
2016). Using remote-sensing data to analyse large-scale 
fires to extract fire footprints is a more feasible method, 
but the accuracy of obtained fire area is limited by the 
spatial resolution of satellite data. There is still substantial 
uncertainty about the interannual variability of fire emis
sions from fire combustion, the spatio-temporal variability 
of their patterns and their long-term trends (Wiedinmyer 
and Neff 2007; Wiedinmyer et al. 2011). There was an 
overestimation in the number of footprints obtained by 
Jenks–DBSCAN method compared withthe number of fires 
investigated on the ground, and in addition to the possibility 
of omissions in field investigations, techniques need to be 
improved to reduce the uncertainty of burned pixels. At the 
same time, the limitations of the single clustering model in 
dealing with noise make it possible to further optimise the 
fire footprint extraction framework. 

Due to the limitations of the spatial resolution of MODIS 
data and the imperfect parameter tuning of the clustering 
model, only fire footprints with large areas can be extracted 
in this study. Making full use of high temporal resolution 
and combining high spatial resolution remote-sensing prod
ucts to enable the extraction of small fire footprints will be 
the focus of in-depth research in the future. Future studies 
should also consider combining other types of remote- 
sensing data to obtain more accurate environmental 
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variables in each fire event to study the diffusion mechanism 
of fire occurrence and driving forces, as well as the spread of 
driving force to assess a region’s dynamics (such as forest 
disturbance and forest restoration), thus providing informa
tion for fire prevention administrations in disaster mitiga
tion and forest management. 

Conclusions 

This study developed an algorithm that combines both tem
poral segmentation and spatial clustering to better capture 
individual fire events from the MODIS MCD64A1 burned 
area dataset, and tested it in the Daxing’anling area of China 
during the period 2001–2006. The algorithm used the time 
information (DOY) of MCD64A1 and Jenks method to clas
sify three fire frequency periods in each year. After meticu
lous parameter tuning, the DBSCAN models were used to 
cluster the burned pixels in each period to obtain fire events 
one by one. The model-extracted results matched 80% of the 
fire events provided by the verification data in space and 
time domains, and the overall R2 of the fire area reached 
0.91, with the highest value of 0.99 in 2003. The proposed 
Jenks–DBSCAN model contributes to the establishment of a 
reliable large-scale fire event database, and provides an 
important tool for data completion, fire prevention manage
ment and forest resource protection in the region. 
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