International Journal of Wildland Fire

Scientific Journal of the International Association of Wildland Fire

Contents Volum	ne 17 Issue 3 2008
Wildland fire probabilities estimated from weather model-deduced monthly mean fire danger indices <i>Haiganoush K. Preisler, Shyh-Chin Chen,</i> <i>Francis Fujioka, John W. Benoit</i> <i>and Anthony L. Westerling</i> <i>International Journal of Wildland Fire</i> 17 , 305–316	Fire danger indices evaluated from a regional simulation weather model were used to estimate probabilities of large fire events on monthly and 1-degree grid scales. This paves a way to assess the skill of climate forecast outputs in predicting wildland fire severity with known precision.
Fire ignitions related to radar reflectivity patterns in Arizona and New Mexico Beth L. Hall International Journal of Wildland Fire 17 , 317–327	Lightning-ignited wildfires in the south-western United States are examined in conjunction with radar reflectivity and cloud- to-ground lightning data. Information pursued through the analysis included whether or not lightning-ignited fires occurred near the perimeter of stationary or non-stationary thunderstorms and tend to occur at the leading edges of thunderstorms in the early stages of the storm's development.
Fire activity in Portugal and its relationship to weather and the Canadian Fire Weather Index System <i>A. Carvalho, M. D. Flannigan, K. Logan,</i> <i>A. I. Miranda and C. Borrego</i> <i>International Journal of Wildland Fire</i> 17 , 328–338	The present paper addresses how area burned and forest fire occurrences in Portugal are related to the weather and the Canadian Forest Fire Weather Index (FWI) System. Statistical analysis indicates that much of the area burned and the number of fires in Portugal is explained by the weather variables and the FWI system components.
Fire and stand history in two limber pine (<i>Pinus flexilis</i>) and Rocky Mountain bristlecone pine (<i>Pinus aristata</i>) stands in Colorado Peter M. Brown and Anna W. Schoettle International Journal of Wildland Fire 17 , 339–347	Fire-scar and tree-recruitment chronologies were developed from two limber and bristlecone pine sites in Colorado. Pop- ulation structures in both sites document relationships with disturbances and changes in climate and land use over the past several centuries, and provide the longest such records yet developed for this area of North America.
Dendroclimatic inference of wildfire activity in Quebec over the 20th century and implications for natural disturbance-based forest management at the northern limit of the commercial forest <i>Héloïse Le Goff, Martin P. Girardin,</i> <i>Mike D. Flannigan and Yves Bergeron</i> <i>International Journal of Wildland Fire</i> 17 , 348–362	We used the climate signal recorded by tree growth for recon- structing the regional fire activity further back in the past. The climate pattern controlling regional fire activity has been rela- tively stable since 1904 and may be used to forecast the severity of the fire season a few weeks in advance.
A comparison of five sampling techniques to estimate surface fuel loading in montane forests <i>Pamela G. Sikkink and Robert E. Keane</i> <i>International Journal of Wildland Fire</i> 17 , 363–379	Five fuel sampling techniques were compared across six fuel classes. We explored how fuel loading values differ using each technique, how each method's results compared with a reference sample, and how prior experience in fuel load sampling affects some results. We also addressed the tradeoffs associated with using each method.
Using visual obstruction to estimate heathland fuel load and structure <i>G. M. Davies, A. Hamilton, A. Smith and C. J. Legg</i> <i>International Journal of Wildland Fire</i> 17 , 380–389	We present a simple non-destructive technique for assessing wildland fuels by visual obstruction. Calibration gives rele- vant information on fuel load, vertical fuel structure and spatial heterogeneity. This 'FuelRule' method is tested in <i>Calluna vul- garis</i> heathlands but could be calibrated for other habitats where vegetation is up to 1 m high.

Implementation of mid-scale fire regime condition class mapping <i>Louis Provencher, Jeff Campbell and Jan Nachlinger</i> <i>International Journal of Wildland Fire</i> 17 , 390–406	We mapped the departure of existing vegetation structure con- ditions from the natural range of variability in the Mount Grant area of western Nevada, USA, to plan fuels restoration projects to meet resource management goals. Fire-sensitive woodlands were found within the natural range of variability, whereas departure increased for shrubland and riparian systems.
Post-dispersal seed predation in <i>Pinus halepensis</i> and consequences on seedling establishment after fire <i>Maria José Broncano, Anselm Rodrigo and Javier Retana International Journal of Wildland Fire</i> 17 , 407–414	Seed predation is an important factor for many plant species. We showed that <i>Pinus halepensis</i> seed predation is mainly carried out by rodents, and has large spatial and temporal variability in both burned and unburned areas. A few years after fire, seed predation may be a factor affecting seedling establishment in burned areas.
Assessing mitigation of wildfire severity by fuel treatments – an example from the Coastal Plain of Mississippi <i>Erik J. Martinson and Philip N. Omi</i> <i>International Journal of Wildland Fire</i> 17 , 415–420	Methods for evaluating fuel treatment effectiveness are illus- trated with an example from an escaped prescribed fire that burned into an area previously treated with repeated prescribed fires. Moderated fire severity in the treated area is attributed to an altered fuel profile created by the repeated prescribed fires.
The relative importance of fine-scale fuel mosaics on reducing fire risk in south-west Tasmania, Australia <i>Karen J. King, Ross A. Bradstock, Geoffrey J. Cary,</i> <i>Joanne Chapman and Jon B. Marsden-Smedley</i> <i>International Journal of Wildland Fire</i> 17, 421–430	The relative importance of fine-scale fuel mosaics in prescribed burning with respect to treatment level and spatial patterning of treatment units was determined using the computer simula- tion model FIRESCAPE-SWTAS in the World Heritage Area of south-west Tasmania, Australia. Fire size distributions, fire incidences, mean annual areas burnt, and risks to defined values in the landscape were assessed.
Mapping the severity of fire using object-based classification of IKONOS imagery <i>G. H. Mitri and I. Z. Gitas</i> <i>International Journal of Wildland Fire</i> 17 , 431–442	This study aimed to develop a method to map the severity of forest fire by employing Very High Resolution satellite imagery. A model that would distinguish between different degrees of fire severity was developed and the accuracy of the results was verified by employing field collected data. Overall accuracy was estimated to be 83%. The main conclusion drawn from this work was that the built classification model has the potential to produce accurate maps of fire severity, especially in the case of the open Mediterranean forest.