International Journal of Wildland Fire

Scientific Journal of the International Association of Wildland Fire

Contents	Volume 17	Issue 4	2008
'Remote sensing of burn severity in boreal North A Edited by NHF French and ES Kasischke	merica'		
Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results <i>Nancy H. F. French, Eric S. Kasischke, Ronald J. H.</i> <i>Karen A. Murphy, David L. Verbyla, Elizabeth E. Ho</i> <i>and Jennifer L. Allen</i> <i>International Journal of Wildland Fire</i> 17 , 443–462	A spo Re <i>all,</i> bo <i>y</i> to	review of past as ecial issue of fire a esults from relating real region have b achieve large-area	ssessments and studies presented in this and burn severity assessments is presented. and mapping fire/burn severity within the een variable. Further research is necessary application of these methods.
Assessing the differenced Normalized Burn Ratio's ability to map burn severity in the boreal forest and tundra ecosystems of Alaska's national parks <i>Jennifer L. Allen and Brian Sorbel</i> <i>International Journal of Wildland Fire</i> 17 , 463–475	Th sat wi tha all co for	is paper compared tTM/ETM+ data a th field measurement at occurred in or ne , the satellite-deriv rrelated with field a rest and tundra veg	I burn severity values derived using Land- and the differenced Normalized Burn Ratio ents of burn severity obtained from 10 fires ar four national park areas in Alaska. Over- red measurements of severity were strongly measurements of severity in both the boreal getation types within the study.
Remote sensing of burn severity: experience from western Canada boreal fires R. J. Hall, J. T. Freeburn, W. J. de Groot, J. M. Pritchard, T. J. Lynham and R. Landry <i>International Journal of Wildland Fire</i> 17 , 476–489	Bu dif fir mo a r by ass	Irn severity measu fferenced Normaliz es in the western odelling, influence non-linear model b fuel type, and a r signment of severi	red by the composite burn index (CBI) and zed Burn Ratio (dNBR) was evaluated over Canadian boreal from the perspectives of of fuel type, and mapping. Results include etween CBI and dNBR, how dNBR varies new approach for mapping based on field ty level to CBI.
Evaluating the ability of the differenced Normalized Burn Ratio (dNBR) to predict ecologically significant burn severity in Alaskan boreal forests <i>Karen A. Murphy, Joel H. Reynolds and John M. Ko</i> <i>International Journal of Wildland Fire</i> 17 , 490–499	Bo t the co oftun on an	oreal forest burn se e organic surface la l for burn severity i -the-ground severi inability to disting	verity is strongly tied to the consumption of over. Assessment of a remote sensing proto- revealed a poor predictive relationship with ity measures in Alaskan boreal forests and uish ecologically important severity levels.
Evaluating the potential of Landsat TM/ETM+ image for assessing fire severity in Alaskan black spruce forests <i>Elizabeth E. Hoy, Nancy H. F. French,</i> <i>Merritt R. Turetsky, Simon N. Trigg</i> <i>and Eric S. Kasischke</i> <i>International Journal of Wildland Fire</i> 17 , 500–514	ery Wa an in ou ma fir ma	e evaluated the po d image transform Alaskan black spi t in the contermine alized Burn Ratio e severity in the bl easured by the con	otential of different spectroscopic indices ations as a basis for mapping fire severity ruce forests. In contrast to studies carried ous USA, our results suggest that the Nor- may not be a strong candidate for mapping lack spruce forests of the boreal region as posite burn index.
Evaluation of the composite burn index for assessing fire severity in Alaskan black spruce forests <i>Eric S. Kasischke, Merritt R. Turetsky, Roger D. Otto</i> <i>Nancy H. F. French, Elizabeth E. Hoy</i> <i>and Evan S. Kane</i> <i>International Journal of Wildland Fire</i> 17 , 515–526	Th ch mar, eva co tar va	the use of the compo- aracteristics of fire aluated. It was four rrelation with mo the in determining riations in fire sever	osite burn index (CBI) to predict important e severity in black spruce ecosystems was and that the composite burn index had low st surface measurements that are impor- how black spruce forests will respond to erity.
Seasonal and topographic effects on estimating fire severity from Landsat TM/ETM+ data David L. Verbyla, Eric S. Kasischke and Elizabeth E. International Journal of Wildland Fire 17 , 527–534	Th tio . <i>Hoy</i> Fin da ref ele tre an	is study examined on, and phenology re severity estimate te of pre-fire and flectance varies sul evation and plant p ends in fire severity d validation of ren	d the effects of topography, solar eleva- on remotely sensed fire severity estimates. es varied substantially depending upon the post-fire images used. Because spectral ostantially due to seasonal changes in solar obenology, monitoring spatial or temporal requires extensive field data for calibration notely sensed fire severity indices.