Supplementary Material

Seasonal and individual variation in selection by feral cats for areas with widespread primary prey and alternative localised prey

Jennyffer CruzA,C, Chris WoolmoreB, M. Cecilia LathamA, A. David M. LathamA, Roger P. PechA and Dean P. AndersonA

ALandcare Research, Lincoln, Canterbury, New Zealand.
BDepartment of Conservation, Christchurch, New Zealand.
CCorresponding author. Email: cruzbernalj@landcarereresearch.co.nz
Fig. S1. Aerial photograph of the study site surrounding the Upper Ohau River, Mackenzie Basin, South Island, New Zealand. Coloured lines depict 100% minimum convex polygons encompassing locations of feral cats (*Felis catus*), using fixes every 2 h during (a) the breeding season (October–February) and (b) the non-breeding season (March–September) of black-fronted terns (*Chlidonias albostriatus*).
a) Breeding season
Fig S2. Spatial autocorrelation functions for feral cats (*Felis catus*) monitored near the Upper Ohau River, Mackenzie Basin, South Island, New Zealand during (a) the breeding season (October–February) and (b) the non-breeding season (March–September) of black-fronted terns (*Chlidonias albostriatus*).
Fig S3. Temporal autocorrelation functions for feral cats (*Felis catus*) monitored near the Upper Ohau River, Mackenzie Basin, South Island, New Zealand during (a) the breeding season (October–February) and (b) the non-breeding season (March–September) of black-fronted terns (*Chlidonias albostriatus*).
b)
R code

R code used to estimate Huber–White robust standard errors for fixed effects in seasonal mixed-effects resource selection functions (RSFs) evaluating resource selection by feral cats (*Felis catus*) living near a colony of black-fronted terns (*Chlidonias albostriatus*) in the Upper Ohau River of the South Island, New Zealand. Mixed-effects RSFs were estimated using package ‘lme4’ (version 1.0-5). The code is adapted from functions in the packages ‘sandwich’ (version 2.3) and ‘lmtest’ (version 0.9-33), following guidelines by Zeileis (2006).

```
# START OF CODE

bread.lmer <- function(obj, ...) {
  vcov(obj)
}

estfun.lmer <- function (obj, ...) {
  residuals(obj, type = 'working') * model.matrix(obj)
}

meat.lmer <- function(obj, adjust = FALSE, ...) {
  # corresponds to the Huber-White estimator
  psi <- estfun.lmer(obj)
  k <- NCOL(psi)
  n <- NROW(psi)
  rval <- crossprod(as.matrix(psi))/n
  if(adjust) rval <- n/(n - k) * rval
  rval
}

sandwich.lmer <- function(obj, bread. = bread.lmer, meat. = meat.lmer, ...) {
  if(is.function(bread.)) bread. <- bread.(obj)
  if(is.function(meat.)) meat. <- meat.(obj, ...)
  1/NROW(estfun.lmer(obj)) * (bread. %*% meat. %*% bread.)
}

coeftest.default.lmer <- function (x, vcov. = NULL, df = NULL, ...) {
  coef0 <- if ("stats4" %in% loadedNamespaces())
    stats4::coef
  else fixef
  vcov0 <- if ("stats4" %in% loadedNamespaces())
```
stats4::vcov
else vcov
est <- coef0(x)
if (is.null(vcov.))
 se <- vcov0(x)
else {
 if (is.function(vcov.))
 se <- vcov.(x)
 else se <- vcov.
}
se <- sqrt(diag(se))
if (lis.null(names(est)) && lis.null(names(se))) {
 if (length(unique(names(est))) == length(names(est)) &&
 length(unique(names(se))) == length(names(se))) {
 anames <- names(est)[names(est) %in% names(se)]
est <- est[anames]
 se <- se[anames]
 } }
} rval <- cbind(est, se)
cnames <- c("Estimate", "Std. Error")
colnames(rval) <- cnames
class(rval) <- "coeftest"
return(rval)

END OF CODE

Reference