Supplementary Material: Wildlife Research 43, 429-437

Supplementary Material

An animal welfare assessment framework for helicopter darting: a case study with a newly developed method for feral horses

Jordan O. Hampton^{A,C}, Hamish Robertson^B, Peter J. Adams^A, Timothy H. Hyndman^A and Teresa Collins^A

^AMurdoch University, 90 South Street, Murdoch, WA 6150, Australia.

^BDepartment of Parks and Wildlife, Anderson Road, Karratha, WA 6714, Australia.

^CCorresponding author. Email: <u>j.hampton@ecotonewildlife.com</u>

Table S1. Drug dosage and physiology data for 11 feral horses (*Equus caballus*) captured via helicopter darting in north-west Australia, October 2014

Body weight was calculated from morphometric data, and drug doses were extrapolated from calculated body mass. Physiological parameters were means from multiple measurements taken during anaesthesia

Animal	Sex	Body mass (kg)	Medetomidine	Ketamine (mg kg ⁻¹)	Atipamezole (mg kg-1)	No. darts	Induction distance (m)	Heart rate (bpm)	Respiratory rate (rpm)	Body temperature (°C)	SPO ₂ (%)
			(mg kg ⁻¹)								
1	F	447	0.23	3.36	0.45	2	1325	42	27	39.9	93
2	F	379	0.26	3.17	0.53	1	2470	32	24	39.8	96
3	F	412	0.24	3.64	0.49	2	1430	30	20	40.4	92
4	F	396	0.25	3.03	0.51	1	293	63	18	40.7	94
5	F	417	0.24	2.88	0.72	2	1630	50	20	40.7	82
6	M	449	0.22	2.67	0.67	2	879	45	26	37.9	78
7	F	388	0.27	3.87	0.52	1	2140	78	24	40.5	88
8	F	462	0.23	3.25	0.43	1	1680	60	24	39.2	85
9	F	424	0.25	3.54	0.59	1	641	45	22	39.8	84
10	F	430	0.23	2.79	0.47	2	1520	49	20	40.1	92
11	M	408	0.26	3.68	0.49	1	2300	42	36	39.1	88
Mean ± s.e.		419 ± 8	0.24 ± 0.0	3.3 ± 0.1	0.53 ± 0.03	1.4 ± 0.2	1483 ± 206	49 ± 4.2	24 ± 1.5	39.8 ± 0.3	88 ± 1.7