Supplementary material

The importance of seasonal resource selection when managing a threatened species: targeting conservation actions within critical habitat designations for the Gunnison sagegrouse

M. B. Rice^{A,D,E}, A. D. Apa^B and L. A. Wiechman^{C,D}

^AColorado Parks and Wildlife, 317 W Prospect Avenue, Fort Collins, CO 80526, USA.

^BColorado Parks and Wildlife, 711 Independent Avenue, Grand Junction, CO 81505, USA.

^cDepartment of Fish, Wildlife, and Conservation Biology, Colorado State University, Colorado, Fort Collins, CO 80526, USA.

^DPresent address: US Fish and Wildlife Service, 1201 Oakridge Drive, Fort Collins, CO 80525, USA.

^ECorresponding author. Email: rice1 min@gmail.com

Basinwide class	Model reclass	
Urban/built up	urban	
Commercial	urban	
Agriculture land	agriculture	
Irrigated ag	agriculture	
Grass/forb rangeland	grassland	
Grass/forb mix	grassland	
Sparse grass (blowouts)	grassland	
Sagebrush community	sagebrush	
Saltbush sommunity	sagebrush	
Sagebrush/gambel oak mix	sagebrush	
Sagebrush/grass mix	sagebrush	
Sagebrush/mesic mountain shrub mix	sagebrush	
Pinon-juniper	forest	
Gambel oak	sagebrush	
Mesic mountain shrub mix	sagebrush	
Upland willow/shrub mix	sagebrush	
PJ-sagebrush mix	sagebrush	
PJ–Mountain shrub mix	forest	
Sparse PJ/shrub/rock mix	forest	
Aspen	forest	
Ponderosa pine	forest	
Englemann spruce/fir mix	forest	
Douglas fir	forest	
Lodgepole pine	forest	
Spruce/lodgepole pine mix	forest	
Bristlecone pine	forest	
Ponderosa pine/Douglas fir mix	forest	
Lodgepole/spruce/fir mix	forest	
Fir/lodgepole pine mix	forest	
Douglas fir/Englemann spruce mix	forest	
Spruce/fir/aspen mix	forest	
Ponderosa pine/aspen mix	forest	
Douglas fir/aspen mix	forest	
Lodgepole pine/aspen mix	forest	
Spruce/fir/lodgepole/aspen mix	forest	
Barren land	bare	
Rock		
Talus slopes and rock outcrops	bare	
Soil	bare	
Alpine meadow	bare	
Alpine grass/forb mix	alpine alpine	
Subalpine shrub community	alpine	
Subalpine grass/forb mix	alpine	
	<u>^</u>	
Riparian Cottonwood	riparian	
	riparian	
Willow	riparian	
Herbaceous riparian	riparian	
Water	water	

 Table S1.
 Original basinwide vegetation classes and the classes used for model development

Table S2.Error matrices comparing the breeding, summer and combined models to thedesignated critical habitat, including overall accuracy and the True Skill Statistic (TSS).

Values are the percentages within each combination of occupied and unoccupied habitat based on occupied habitat for the models being > 0.50 relatively probability of presence.

		Critical habitat		
			Unoccupied	
Breeding model	Occupied	47.8	7.2	
	Unoccupied	36.3	8.6	
	Overall accuracy	56.5		
	TSS	0.113		

_

		Critical habitat		
			Unoccupied	
Summer model	Occupied	52.8	10.2	
	Unoccupied	31.4	5.6	
	Overall accuracy	58.4 0.017		
	TSS			

		Critical habitat	
			Unoccupied
Combined model	Occupied	63.2	10.6
	Unoccupied	20.9	5.3
	Overall accuracy	68.5	
	TSS	0.082	