Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Is body shape of varanid lizards linked with retreat choice?

Graham G. Thompson A F , Christofer J. Clemente B , Philip C. Withers C , Bryan G. Fry D and Janette A. Norman E
+ Author Affiliations
- Author Affiliations

A Centre for Ecosystem Management, Edith Cowan University, 100 Joondalup Drive, Joondalup, WA 6027, Australia.

B Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.

C Zoology, School of Animal Biology (M092), University of Western Australia, Crawley, WA 6009, Australia.

D Department of Biochemistry, Bio21 Institute, University of Melbourne, Vic. 3010, Australia.

E Population and Evolutionary Genetics Unit, Sciences Department, Museum Victoria, GPO Box 666, Melbourne, Vic. 3001, Australia.

F Corresponding author. Email: g.thompson@ecu.edu.au

Australian Journal of Zoology 56(5) 351-362 https://doi.org/10.1071/ZO08030
Submitted: 18 March 2008  Accepted: 14 January 2009   Published: 3 March 2009

Abstract

In our earlier analysis of Varanus body shape, size was a dominating factor with some qualitative phylogenetic patterns and grouping of species into ecological categories. With a phylogeny and an improved capacity to account for the effects of size, we have reanalysed our morphometric data for male Australian goannas (Varanus spp.) using an increased number of specimens and species to examine whether variations in body shape can be accounted for by retreat choice, as it can for Western Australian Ctenophorus dragon lizards. After accounting for body size in the current analysis, four ecotypes based on retreat choice (i.e. those that retreat to oblique crevices between large rocks or rock faces, those that retreat to burrows dug into the ground, those that retreat to spaces under rocks or in tree hollows, and those that retreat to trees but not tree hollows) accounted for much of the variation in body shape. There is a phylogenetic pattern to the ecotypes, but accounting for phylogenetic effects did not weaken the link between body shape and ecotype based on retreat choice. This suggests that there are large differences in body shape among ecotypes, and shape is relatively independent of phylogeny. The strong link between shape and choice of retreat site in Varanus spp. is consistent with that for Ctenophorus spp. We speculate on why there might be a strong link between retreat choice and body shape for both Varanus and Ctenophorus.


References

Arnold E. N. (1988). Caudal autotomy as a defense. In ‘Biology of the Reptilia. Vol. 16’. (Eds C. Gans and R. B. Huey.) pp. 235–274. (Liss: New York.)

Arnold, S. J. (1983). Morphology, performance and fitness. Integrative and Comparative Biology 23, 347–361.
CrossRef |

Ast, J. C. (2001). Mitochondrial DNA evidence and evolution in Varanoidea (Squamata). Cladistics 17, 211–226.
CrossRef |

Bauwens, D. , Garland, T. , Castilla, A. M. , and van Damme, R. (1995). Evolution of sprint speed in lacertid lizards: morphological, physiological, and behavioral covariation. Evolution 49, 848–863.
CrossRef |

Baverstock, P. , King, D. , King, M. , Birrell, J. , and Krieg, M. (1993). Evolution of species of Varanidae: microcomplement fixation analysis of serum albumins. Australian Journal of Zoology 41, 621–638.
CrossRef |

Bookstein F. , Chernoff B. , Elder R. , Humphries J. , Smith G. , and Strauss R. (1985). ‘Morphometrics in Evolutionary Biology: The Geometry of Size and Shape Change, with Examples from Fishes.’ (Academy of Natural Sciences of Philadelphia: Philadelphia, PA.)

Card, W. , and Kluge, A. G. (1995). Hemipeneal skeleton and varanid lizard systematics. Journal of Herpetology 29, 275–280.
CrossRef |

Christian K. (2004). Varanus panoptes. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 423–429. (Indiana University Press: Bloomington, IN.)

Clemente C. (2007). Evolution of locomotion in Australian varanid lizards (Reptilia: Squamata: Varanidae): ecomorphological and ecophysiological considerations. Ph.D. Thesis, University of Western Australia, Perth.

Cogger H. (1992). ‘Reptiles and Amphibians of Australia.’ (Reed: Sydney.)

Dryden G. (2004). Varanus acanthurus. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 298–307. (Indiana University Press: Bloomington, IN.)

Dryden G. , and Ziegler T. (2004). Varanus indicus. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 184–188. (Indiana University Press: Bloomington, IN.)

Eidenmuller B. (2004). Varanus storri. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 472–476. (Indiana University Press: Bloomington, IN.)

Filatov, D. A. (2002). Analysis of DNA sequence data sets. Molecular Ecology Notes 2, 621–624.
CrossRef | CAS |

Fitch, A. J. , Goodman, A. E. , and Donnellan, S. C. (2006). A molecular phylogeny of the Australian monitor lizards (Squamata: Varanidae) inferred from mitochondrial DNA sequences. Australian Journal of Zoology 54, 253–269.
CrossRef | CAS |

Fuller, S. , Baverstock, P. , and King, D. (1998). Biogeographic origins of goannas (Varanidae): a molecular perspective. Molecular Phylogenetics and Evolution 9, 294–307.
CrossRef | CAS | PubMed |

Garland T. , and Losos J. B. (1994). Ecological morphology of locomotor performance in squamate reptiles. In ‘Ecological Morphology: Integrative Organismal Biology’. (Eds P. C. Wainwright and S. M. Reilly.) pp. 240–302. (University of Chicago Press: Chicago, IL.)

Harmon, L. J. , Kolbe, J. J. , Cheverud, J. M. , and Losos, J. B. (2005). Convergence and the multidimensional niche. Evolution 59, 409–421.
PubMed |

Herrel, A. , Meyers, J. J. , and Vanhooydonck, B. (2002). Relationship between microhabitat use and limb shape in phrynosomatid lizards. Biological Journal of the Linnean Society 77, 149–163.
CrossRef |

Hews, D. K. (1996). Size and scaling of sexually-selected traits in the lizard, Uta palmeri. Journal of Zoology 238, 743–757.


Hildebrand M. (1985). Digging of quadrupeds. In ‘Functional Vertebrate Morphology’. (Eds M. Hildebrand, D. M. Bramble, K. F. Liem and D. B. Wake.) pp. 89–109. (Harvard University Press: Cambridge, MA.)

Horn G.-H. (2004). Varanus gilleni. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 355–365. (Indiana University Press: Bloomington, IN.)

Horn G.-H. , and King D. R. (2004). Varanus giganteus. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 335–354. (Indiana University Press: Bloomington, IN.)

Husband G. , and Christian K. (2004). Varanus primordius. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 434–437. (Indiana University Press: Bloomington, IN.)

Irschick, D. J. , and Garland, T. (2001). Integrating function and ecology in studies of adaptation: investigations of locomotor capacity as a model system. Annual Review of Ecology and Systematics 32, 367–396.
CrossRef |

Irwin, S. (1996). Capture, field observations and husbandry of the rare canopy varanid. Thylacinus 21, 12–19.


Irwin S. (2004). Varanus keithhornei. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 401–405. (Indiana University Press: Bloomington, IN.)

Jusufi, A. , Goldman, D. I. , and Revzen, S. (2008). Active tails enhance arboreal acrobatics in geckos. Proceedings of the National Academy of Sciences of the United States of America 105, 4215–4219.
CrossRef | CAS | PubMed |

King D. R. (2004 a). Varanus pilbarensis. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 430–433. (Indiana University Press: Bloomington, IN.)

King D. , and Green B. (1999). ‘Varanid: The Biology of Varanid Lizards.’ (UNSW Press: Sydney.)

King D. R. , and King R. A. (2004). Varanus rosenbergi. In ‘Varanoid lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 438–450. (Indiana University Press: Bloomington, IN.)

King M. (2004 b). Varanus kingorum. In ‘Varanoid lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 406–409. (Indiana University Press: Bloomington, IN.)

Kohlsdorf, T. , Garland, T. , and Navas, C. A. (2001). Limb and tail lengths in relation to substrate usage in Tropidurus lizards. Journal of Morphology 248, 151–164.
CrossRef | CAS | PubMed |

LaBarbera, M. (1989). Analyzing body size as a factor in ecology and evolution. Annual Review of Ecology and Systematics 20, 97–117.
CrossRef |

Lemm J. M. , and Bedford G. (2004). Varanus spenceri. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 466–471. (Indiana University Press: Bloomington, IN.)

Losos, J. B. (1990a). Ecomorphology, performance capability and scaling of West Indian Anolis lizards: an evolutionary analysis. Ecological Monographs 60, 369–388.
CrossRef |

Losos, J. B. (1990b). The evolution of form and function: morphology and locomotor performance in West Indian Anolis lizards. Evolution 44, 1189–1203.
CrossRef |

Macey, J. R. , Larson, A. , Ananjeva, N. B. , Fang, Z. , and Papenfuss, T. J. (1997). Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Molecular Biology and Evolution 14, 91–104.
CAS | PubMed |

Malhotra, A. , and Thorpe, R. S. (1997). Size and shape variation in a Lesser Antillean anole, Anolis oculatus (Sauria: Iguanidae) in relation to habitat. Biological Journal of the Linnean Society 60, 53–72.


Mayes P. J. (2007). The ecology and behaviour of Varanus mertensi (Reptilia: Varanidae). Ph.D. Thesis, Edith Cowan University, Perth.

Melville, J. , and Swain, R. (2000). Evolutionary relationships between morphology, performance and habitat openness in the lizard genus Niveoscincus (Scincidae: Lygosominae). Biological Journal of the Linnean Society 70, 667–683.


Miles D. B. (1994). Covariation between morphology and locomotory performance in sceloporine lizards. In ‘Lizard Ecology: Historical and Experimental Perspectives’. (Eds L. J. Vitt and E. R. Pianka.) pp. 207–235. (Princeton University Press: Princeton, NJ.)

Mosimann, J. E. (1970). Size allometry: size and shape variables with characterizations of the lognormal and generalised gamma distributions. Journal of the American Statistical Association 65, 930–945.
CrossRef |

Norman, J. A. , Christidis, L. , Westerman, M. , and Hill, F. A. R. (1998). Molecular data confirms the species status of the Christmas Island hawk-owl Ninox natalis. Emu 98, 197–208.
CrossRef |

Pianka, E. R. (1969). Notes on the biology of Varanus caudolineatus and Varanus gilleni. Western Australian Naturalist 11, 76–82.


Pianka, E. R. (1994). Comparative ecology of Varanus in the Great Victoria Desert. Australian Journal of Ecology 19, 395–408.
CrossRef |

Pianka E. R. (2004 a). Varanus brevicauda. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 312–317. (Indiana University Press: Bloomington, IN.)

Pianka E. R. (2004 b). Varanus eremius. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 328–334. (Indiana University Press: Bloomington, IN.)

Pianka E. R. (2004 c). Varanus semiremex. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 462–465. (Indiana University Press: Bloomington, IN.)

Pianka E. R. (2004 d). Varanus tristis. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 477–487. (Indiana University Press: Bloomington, IN.)

Posada, D. , and Crandall, K. A. (1998). MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818.
CrossRef | CAS | PubMed |

Rohlf, F. J. (2001). Comparative method for the analysis of continuous variables: geometric interpretations. Evolution 55, 2143–2160.
CAS | PubMed |

Russell, A. P. , and Bauer, A. M. (1992). The m. caudifemoralis longus and its relationship to caudal autotomy and locomotion in lizards (Reptilia: Sauria). Journal of Zoology 227, 127–143.


Schultz T. , and Doody S. (2004). Varanus mitchelli. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 416–422. (Indiana University Press: Bloomington, IN.)

Smith L. A. , Sweet S. S. , and King D. R. (2004). Varanus scalaris. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 451–461. (Indiana University Press: Bloomington, IN.)

Somers, K. M. (1986). Multivariate allometry and removal of size with principal components analysis. Systematic Zoology 35, 359–368.
CrossRef |

Somers, K. M. (1989). Allometry, isometry and shape in principal component analysis. Systematic Zoology 38, 169–173.
CrossRef |

Sprackland, R. G. (1991). The origin and zoogeography of the monitor lizards of the subgenus Odatria Gray (Sauria: Varanidae): a re-evaluation. Mertensiella 2, 240–252.


Sweet, S. S. (1999). Spatial ecology of Varanus glauerti and V. glebopalma in Northern Australia. Mertensiella 11, 317–366.


Sweet S. S. (2004 a). Varanus glauerti. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 366–372. (Indiana University Press: Bloomington, IN.)

Sweet S. S. (2004 b). Varanus glebopalma. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 373–379. (Indiana University Press: Bloomington, IN.)

Swofford D. L. (2000). ‘PAUP*: Phylogenetic Analysis using Parsimony (* And Other Methods).’ Version 4.0. (Sinauer: Sunderland, MA.)

Thompson, G. G. (1994). Activity area during the breeding season of Varanus gouldii (Reptilia: Varanidae) in an urban environment. Wildlife Research 21, 633–641.
CrossRef |

Thompson, G. G. (1995). Foraging patterns and behaviours, body postures and movement speed for varanids, Varanus gouldii (Reptilia: Varanidae), in a semi-urban environment. Journal of the Royal Society of Western Australia 78, 107–114.


Thompson G. G. (2004 a). Varanus caudolineatus. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 318–327. (Indiana University Press: Bloomington, IN.)

Thompson G. G. (2004 b). Varanus gouldii. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 380–400. (Indiana University Press: Bloomington, IN.)

Thompson, G. G. , and Withers, P. C. (1997). Comparative morphology of Western Australian varanid lizards (Squamata: Varanidae). Journal of Morphology 233, 127–152.
CrossRef |

Thompson, G. G. , and Withers, P. C. (2005). The relationship between size-free body shape and choice of retreat for Western Australian Ctenophorus (Agamidae) lizards. Amphibia-Reptilia 26, 65–72.
CrossRef |

Thompson, G. G. , de Boer, M. , and Pianka, E. R. (1999). Activity areas and daily movements of an arboreal monitor lizard, Varanus tristis (Squamata: Varanidae) during the breeding season. Australian Journal of Ecology 24, 117–122.
CrossRef |

Thompson, J. D. , Gibson, T. J. , Plewniak, F. , Jeanmougin, F. , and Higgins, D. G. (1997). The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality tools. Nucleic Acids Research 25, 4876–4882.
CrossRef | CAS | PubMed |

Vanhooydonck, B. , and Van Damme, R. (1999). Evolutionary relationships between body shape and habitat use in lacertid lizards. Evolutionary Ecology Research 1, 785–805.


Vanhooydonck, B. , and Van Damme, R. (2003). Relationships between locomotor performance, microhabitat use and antipredator behaviour in lacertid lizards. Ecology 17, 160–169.


Vitt, L. J. , Caldwell, J. P. , Zani, P. A. , and Titus, T. A. (1997). The role of habitat shift in the evolution of lizard morphology: evidence from tropical Tropidurus. Proceedings of the National Academy of Sciences of the United States of America 94, 3828–3832.
CrossRef | CAS | PubMed |

Weavers, B. W. (1993). Home range of male lace monitors, Varanus varius (Reptilia: Varanidae), in south eastern Australia. Wildlife Research 20, 303–313.
CrossRef |

Weavers B. (2004). Varanus varius. In ‘Varanoid Lizards of the World’. (Eds E. R. Pianka and D. R. King.) pp. 488–502. (Indiana University Press: Bloomington, IN.)

Wilson S. K. , and Knowles D. G. (1995). ‘Australia’s Reptiles: A Photographic Reference to the Terrestrial Reptiles of Australia.’ (Cornstalk: Sydney.)





Appendix 1.  List of taxa sequenced, source and voucher number for tissue or specimen, GenBank accession number and location
WC = wild-caught, AM = Australian Museum, QM = Queensland Museum
Click to zoom



Rent Article (via Deepdyve) Export Citation Cited By (10)