Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Evolutionary and phylogenetic significance of platypus microsatellites conserved in mammalian and other vertebrate genomes

E. Buschiazzo A B D and N. J. Gemmell A C
+ Author Affiliations
- Author Affiliations

A Molecular Ecology Laboratory, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.

B Department of Forest Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, V6T1Z4, Canada.

C Centre for Reproduction and Genomics, Department of Anatomy and Structural Biology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.

D Corresponding author. Email: elbuzzo@gmail.com

Australian Journal of Zoology 57(4) 175-184 https://doi.org/10.1071/ZO09038
Submitted: 7 April 2009  Accepted: 18 June 2009   Published: 26 October 2009

Abstract

Building on the recent publication of the first monotreme genome, that of the platypus, and the discovery that many platypus microsatellites are found in the genomes of three mammals (opossum, human, mouse) and two non-mammalian vertebrates (chicken, lizard), we investigated further the evolutionary conservation of microsatellites identified in the monotreme lineage and tested whether the conservation of microsatellites we observe in vertebrates has phylogenetic signal. Most conserved platypus microsatellites (75%) were found in one species, with the platypus sharing many more microsatellites with mammals than with reptiles (83% versus 30%). Within mammals, unexpectedly, many more platypus microsatellites had orthologues in the opossum genome than in that of either human or mouse, which was at odds with the very well supported view that monotremes diverged from a lineage containing both eutherians and marsupials (Theria hypothesis). We investigated the phylogenetic significance of microsatellite conservation through Bayesian and maximum parsimony tree reconstruction using presence/absence data of microsatellite loci conserved in a total of 18 species, including the platypus. Although models of evolution implemented in current phylogenetic reconstruction algorithms are not tailor-made for microsatellite data, we were able to construct vertebrate phylogenies that correspond well to the accepted mammalian phylogeny, with two of our three reconstructions supporting the Theria hypothesis. Our analysis provides ground for new theoretical development in phylogeny-based analyses of conserved microsatellite data.


Acknowledgements

A. Fouquet provided sound advice for phylogenetic reconstruction. V. Mencl also helped maintain the stand-alone Galaxy version and continued access to the supercomputing facilities at the University of Canterbury. Financial support for this work came from a Royal Society of New Zealand Marsden grant (UOC 202) to NJG. Computational support was provided by the BestGRID project, which was supported by the Tertiary Education Commission’s Innovation Development Fund.


References

Altekar, G. , Dwarkadas, S. , Huelsenbeck, J. P. , and Ronquist, F. (2004). Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20, 407–415.
CrossRef | CAS | PubMed |

Ayub, Q. , Mansoor, A. , Ismail, M. , Khaliq, S. , and Mohyuddin, A. , et al. (2003). Reconstruction of human evolutionary tree using polymorphic autosomal microsatellites. American Journal of Physical Anthropology 122, 259–268.
CrossRef | PubMed |

Bashir, A. , Ye, C. , Price, A. L. , and Bafna, V. (2005). Orthologous repeats and mammalian phylogenetic inference. Genome Research 15, 998–1006.
CrossRef | CAS | PubMed |

Bejerano, G. , Pheasant, M. , Makunin, I. , Stephen, S. , Kent, W. J. , Mattick, J. S. , and Haussler, D. (2004). Ultraconserved elements in the human genome. Science 304, 1321–1325.
CrossRef | CAS | PubMed |

Bininda-Emonds, O. R. P. , Cardillo, M. , Jones, K. E. , MacPhee, R. D. E. , Beck, R. M. D. , Grenyer, R. , Price, S. A. , Vos, R. A. , Gittleman, J. L. , and Purvis, A. (2007). The delayed rise of present-day mammals. Nature 446, 507–512.
CrossRef | CAS | PubMed |

Blanchette, M. (2007). Computation and analysis of genomic multi-sequence alignments. Annual Review of Genomics and Human Genetics 8, 193–213.
CrossRef | CAS | PubMed |

Bowcock, A. M. , Ruiz-Linares, A. , Tomfohrde, J. , Minch, E. , Kidd, J. R. , and Cavalli-Sforza, L. L. (1994). High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368, 455–457.
CrossRef | CAS | PubMed |

Buschiazzo E. (2008). Conservation and evolution of microsatellites in vertebrate genomes. Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand.

Buschiazzo, E. , and Gemmell, N. J. (2006). The rise, fall and renaissance of microsatellites in eukaryotic genomes. BioEssays 28, 1040–1050.
CrossRef | CAS | PubMed |

Chang, J. T. (1996). Full reconstruction of Markov models on evolutionary trees: identifiability and consistency. Mathematical Biosciences 137, 51–73.
CrossRef | CAS | PubMed |

de Jong, W. W. , van Dijk, M. A. , Poux, C. , Kappe, G. , van Rheede, T. , and Madsen, O. (2003). Indels in protein-coding sequences of Euarchontoglires constrain the rooting of the eutherian tree. Molecular Phylogenetics and Evolution 28, 328–340.
CrossRef | CAS | PubMed |

Domingo-Roura, X. , Lopez-Giraldez, F. , Saeki, M. , and Marmi, J. (2005). Phylogenetic inference and comparative evolution of a complex microsatellite and its flanking regions in carnivores. Genetical Research 85, 223–233.
CrossRef | CAS | PubMed |

Ellegren, H. (2004). Microsatellites: simple sequences with complex evolution. Nature Reviews. Genetics 5, 435–445.
CrossRef | CAS | PubMed |

Estoup, A. , Jarne, P. , and Cornuet, J. M. (2002). Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Molecular Ecology 11, 1591–1604.
CrossRef | CAS | PubMed |

Ferguson-Smith, M. A. , and Trifonov, V. (2007). Mammalian karyotype evolution. Nature Reviews. Genetics 8, 950–962.
CrossRef | CAS | PubMed |

Giardine, B. , Riemer, C. , Hardison, R. C. , Burhans, R. , and Elnitski, L. , et al. (2005). Galaxy: a platform for interactive large-scale genome analysis. Genome Research 15, 1451–1455.
CrossRef | CAS | PubMed |

Gibbs, R. A. , Weinstock, G. M. , Metzker, M. L. , Muzny, D. M. , and Sodergren, E. J. , et al. (2004). Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428, 493–521.
CrossRef | CAS | PubMed |

Goldstein, D. B. , Ruiz Linares, A. , Cavalli-Sforza, L. L. , and Feldman, M. W. (1995). An evaluation of genetic distances for use with microsatellite loci. Genetics 139, 463–471.
CAS | PubMed |

Huelsenbeck, J. P. , and Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.
CrossRef | CAS | PubMed |

Huntley, M. A. , and Clark, A. G. (2007). Evolutionary analysis of amino acid repeats across the genomes of 12 Drosophila species. Molecular Biology and Evolution 24, 2598–2609.
CrossRef | CAS | PubMed |

Huson, D. H. , and Steel, M. (2004). Phylogenetic trees based on gene content. Bioinformatics 20, 2044–2049.
CrossRef | CAS | PubMed |

Janke, A. , Gemmell, N. J. , Feldmaier-Fuchs, G. , von Haeseler, A. , and Pääbo, S. (1996). The mitochondrial genome of a monotreme – the platypus (Ornithorhynchus anatinus). Journal of Molecular Evolution 42, 153–159.
CrossRef | CAS | PubMed |

Janke, A. , Magnell, O. , Wieczorek, G. , Westerman, M. , and Arnason, U. (2002). Phylogenetic analysis of 18S rRNA and the mitochondrial genomes of the wombat, Vombatus ursinus, and the spiny anteater, Tachyglossus aculeatus: increased support for the Marsupionta hypothesis. Journal of Molecular Evolution 54, 71–80.
CrossRef | CAS | PubMed |

Jobb G. (2007). TREEFINDER version of November 2007. Distributed by the author; available at www.treefinder.de [Verified August 2009]

Karolchik, D. , Baertsch, R. , Diekhans, M. , Furey, T. S. , and Hinrichs, A. , et al. (2003). The UCSC genome browser database. Nucleic Acids Research 31, 51–54.
CrossRef | CAS | PubMed |

Katzman, S. , Kern, A. D. , Bejerano, G. , Fewell, G. , Fulton, L. , Wilson, R. K. , Salama, S. R. , and Haussler, D. (2007). Human genome ultraconserved elements are ultraselected. Science 317, 915.
CrossRef | CAS | PubMed |

Kent, W. J. , Baertsch, R. , Hinrichs, A. , Miller, W. , and Haussler, D. (2003). Evolution’s cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proceedings of the National Academy of Sciences of the United States of America 100, 11484–11489.
CrossRef | CAS | PubMed |

Kofler, R. , Schlötterer, C. , and Lelley, T. (2007). SciRoKo: a new tool for whole genome microsatellite search and investigation. Bioinformatics 23, 1683–1685.
CrossRef | CAS | PubMed |

Kriegs, J. O. , Churakov, G. , Kiefmann, M. , Jordan, U. , Brosius, J. , and Schmitz, J. (2006). Retroposed elements as archives for the evolutionary history of placental mammals. PLoS Biology 4, e91.
CrossRef | PubMed |

Lindsay, H. , Yap, V. B. , Ying, H. , and Huttley, G. A. (2008). Pitfalls of the most commonly used models of context dependent substitution. Biology Direct 3, 52.
CrossRef | PubMed |

Makova, K. D. , Nekrutenko, A. , and Baker, R. J. (2000). Evolution of microsatellite alleles in four species of mice (genus Apodemus). Journal of Molecular Evolution 51, 166–172.
CAS | PubMed |

Martin, A. P. , Pardini, A. T. , Noble, L. R. , and Jones, C. S. (2002). Conservation of a dinucleotide simple sequence repeat locus in sharks. Molecular Phylogenetics and Evolution 23, 205–213.
CrossRef | CAS | PubMed |

Meyer, E. , Wiegand, P. , Rand, S. P. , Kuhlmann, D. , Brack, M. , and Brinkmann, B. (1995). Microsatellite polymorphisms reveal phylogenetic relationships in primates. Journal of Molecular Evolution 41, 10–14.
CrossRef | CAS | PubMed |

Mikulícek, P. , Crnobrnja-Isailovic, J. , and Piálek, J. (2007). Can microsatellite markers resolve phylogenetic relationships between closely related crested new species (Triturus cristatus superspecies)? Amphibia-Reptilia 28, 467–474.
CrossRef |

Miller, W. , Rosenbloom, K. , Hardison, R. C. , Hou, M. , and Taylor, J. , et al. (2007). 28-way vertebrate alignment and conservation track in the UCSC Genome Browser. Genome Research 17, 1797–1808.
CrossRef | CAS | PubMed |

Noor, M. A. , Kliman, R. M. , and Machado, C. A. (2001). Evolutionary history of microsatellites in the obscura group of Drosophila. Molecular Biology and Evolution 18, 551–556.
CAS | PubMed |

Pagel, M. , and Meade, A. (2004). A phylogenetic mixture model for detecting pattern-heterogeneity in gene sequence or character-state data. Systems Biology 53, 571–581.
CrossRef |

Pagel, M. , Meade, A. , and Barker, D. (2004). Bayesian estimation of ancestral character states on phylogenies. Systematic Biology 53, 673–684.
CrossRef | PubMed |

Paszek, A. A. , Flickinger, G. H. , Fontanesi, L. , Beattie, C. W. , Rohrer, G. A. , Alexander, L. , and Schook, L. B. (1998). Evaluating evolutionary divergence with microsatellites. Journal of Molecular Evolution 46, 121–126.
CrossRef | CAS | PubMed |

Rambaut A. (2006–2008). FigTree version 1.1. Distributed by the author; available at http://tree.bio.ed.ac.uk/software/figtree/ [Verified August 2009]

Richard, M. , and Thorpe, R. S. (2001). Can microsatellites be used to infer phylogenies? Evidence from population affinities of the western Canary Island lizard (Gallotia galloti). Molecular Phylogenetics and Evolution 20, 351–360.
CrossRef | CAS | PubMed |

Ronquist, F. , and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
CrossRef | CAS | PubMed |

Rout, P. , Joshi, M. , Mandal, A. , Laloe, D. , Singh, L. , and Thangaraj, K. (2008). Microsatellite-based phylogeny of Indian domestic goats. BMC Genetics 9, 11.
CrossRef | PubMed |

Shepherd, L. D. , and Lambert, D. M. (2005). Mutational bias in penguin microsatellite DNA. The Journal of Heredity 96, 566–571.
CrossRef | CAS | PubMed |

Shriver, M. D. , Jin, L. , Boerwinkle, E. , Deka, R. , Ferrell, R. E. , and Chakraborty, R. (1995). A novel measure of genetic-distance for highly polymorphic tandem repeat loci. Molecular Biology and Evolution 12, 914–920.
CAS | PubMed |

Siepel, A. , Bejerano, G. , Pedersen, J. S. , Hinrichs, A. S. , and Hou, M. , et al. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Research 15, 1034–1050.
CrossRef | CAS | PubMed |

Slatkin, M. (1995). A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457–462.
CAS | PubMed |

Swofford D. L. (2002). PAUP*: Phylogenetic Analyses Using Parsimony* (and Other Methods). Distributed by the author; available at http://paup.csit.fsu.edu/ [Verified August 2009]

Takezaki, N. , and Nei, M. (2008). Empirical tests of the reliability of phylogenetic trees constructed with microsatellite DNA. Genetics 178, 385–392.
CrossRef | PubMed |

The ENCODE Project Consortium (2007). Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816.
CrossRef | PubMed |

Tóth, G. , Gáspári, Z. , and Jurka, J. (2000). Microsatellites in different eukaryotic genomes: survey and analysis. Genome Research 10, 967–981.
CrossRef | PubMed |

van Rheede, T. , Bastiaans, T. , Boone, D. N. , Hedges, S. B. , de Jong, W. W. , and Madsen, O. (2006). The platypus is in its place: nuclear genes and indels confirm the sister group relation of monotremes and therians. Molecular Biology and Evolution 23, 587–597.
CrossRef | CAS | PubMed |

Veyrunes, F. , Waters, P. D. , Miethke, P. , Rens, W. , and McMillan, D. , et al. (2008). Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Research 18, 965–973.
CrossRef | CAS | PubMed |

Warren, W. C. , Hillier, L. W. , Graves, J. A. M. , Birney, E. , and Ponting, C. P. , et al. (2008). Genome analysis of the platypus reveals unique signatures of evolution. Nature 453, 175–183.
CrossRef | CAS | PubMed |

Waterson, R. H. , Lindblad-Ton, K. , Birney, E. , Rogers, J. , Abril, J. F. , and Agarwal, P. , et al. (2002). Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562.
CrossRef | PubMed |



Rent Article (via Deepdyve) Export Citation Cited By (8)